cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136445 Size of the BDD for the hidden weighted bit function, with the variables in their natural ordering.

Original entry on oeis.org

3, 3, 7, 10, 17, 25, 40, 57, 85, 121, 172, 240, 335, 459, 630, 856, 1160, 1564, 2105, 2821, 3777, 5044, 6728, 8961, 11926, 15854, 21066, 27972, 37127, 49258, 65336, 86636, 114862, 152256, 201800, 267436, 354394, 469591, 622205, 824379, 1092211
Offset: 1

Views

Author

Don Knuth, Apr 04 2008

Keywords

Examples

			By the first formula: a(9) = (56*A001608(11)+77*A001608(10) + 47*A001608(9))/23 - floor(9^2/4) - floor((7*9+1)/3) + (9 mod 2) - 10 = 135 - 20 - 21 + 1 - 10 = 85. - _Bruno Berselli_, Jan 31 2013
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Cf. A137202.

Programs

  • Magma
    I:=[3,3,7,10,17,25,40,57,85]; [n le 9 select I[n] else Self(n-1)+2*Self(n-2)-3*Self(n-4)-2*Self(n-5)+2*Self(n-6)+2*Self(n-7)-Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 09 2015
  • Mathematica
    p[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[n_] := (56*p[n+2] + 77*p[n+1] + 47*p[n])/23 - Floor[n^2/4] - Floor[(7*n+1)/3] + Mod[n, 2] - 10; Table[a[n], {n, 1, 41}] (* Jean-François Alcover, Jan 31 2013 *)
    LinearRecurrence[{1, 2, 0, -3, -2, 2, 2, 0, -1}, {3, 3, 7, 10, 17, 25, 40, 57, 85}, 50] (* Vincenzo Librandi, Aug 09 2015 *)

Formula

a(n) = (56*P(n+2)+77*P(n+1)+47*P(n))/23 - floor(n^2/4) - floor((7*n+1)/3) + (n mod 2) - 10, where P = A001608. - Don Knuth, Dec 09 2008
G.f.: -x*(x^8+x^7-2*x^6-3*x^5-2*x^4+3*x^3+2*x^2-3) / ((x-1)^3*(x+1)*(x^2+x+1)*(x^3+x^2-1)). - Colin Barker, Jan 29 2013

Extensions

Bryant reference added by Don Knuth, Apr 23 2008
Extension from T. D. Noe, Dec 10 2008