cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136461 Expansion of e.g.f.: A(x) = -(1 + LambertW(-log(1+x))/log(1+x))/x.

Original entry on oeis.org

1, 1, 3, 14, 96, 849, 9362, 123101, 1888016, 33066768, 651883152, 14286514186, 344690210928, 9079702374300, 259327537407416, 7983107543564724, 263518937698466304, 9285770278110061664, 347916420499685643072, 13812127364516107258944, 579183295530010157485824
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

A033917 gives the coefficients of iterated exponential function defined by y(x) = x^y(x) expanded about x=1.

Crossrefs

Cf. A033917.
Row sums of A295027 (shifted).
Main diagonal of A295028 (shifted).

Programs

  • Maple
    a:= n-> add(Stirling1(n+1, k)*(k+1)^(k-1), k=0..n+1)/(n+1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 21 2016
  • Mathematica
    CoefficientList[Series[-(1+LambertW[-Log[1+x]]/Log[1+x])/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(i=0,n+1,(i+1)^(i-1)*log(1+x +O(x^(n+2) ))^i/i!), n+1)}
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(-(1+lambertw(-log(1+x))/log(1+x))/x  )) \\ G. C. Greubel, Feb 19 2018

Formula

a(n) = A033917(n+1)/(n+1).
E.g.f.: A(x) = (1/x)*Sum_{i>=1} (i+1)^(i-1) * log(1+x)^i/i!.
a(n) ~ n^(n-1) / ( exp(n-3/2+exp(-1)/2) * (exp(exp(-1))-1)^(n+1/2) ). - Vaclav Kotesovec, Nov 27 2012