cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136485 Number of unit square lattice cells enclosed by origin centered circle of diameter n.

Original entry on oeis.org

0, 0, 4, 4, 12, 16, 24, 32, 52, 60, 76, 88, 112, 120, 148, 164, 192, 216, 256, 276, 308, 332, 376, 392, 440, 476, 524, 556, 608, 648, 688, 732, 796, 832, 904, 936, 1012, 1052, 1124, 1176, 1232, 1288, 1372, 1428, 1508, 1560, 1648, 1696, 1788, 1860, 1952, 2016
Offset: 1

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Comments

a(n) is the number of complete squares that fit inside the circle with diameter n, drawn on squared paper.

Examples

			a(3) = 4 because a circle centered at the origin and of radius 3/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
		

Crossrefs

Alternating merge of A119677 of A136485.

Programs

  • Magma
    A136485:= func< n | n le 1 select 0 else 4*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
    [A136485(n): n in [1..100]]; // G. C. Greubel, Jul 29 2023
    
  • Mathematica
    Table[4*Sum[Floor[Sqrt[(n/2)^2 - k^2]], {k,Floor[n/2]}], {n,100}]
  • SageMath
    def A136485(n): return 4*sum(floor(sqrt((n/2)^2-k^2)) for k in range(1,(n//2)+1))
    [A136485(n) for n in range(1,101)] # G. C. Greubel, Jul 29 2023

Formula

a(n) = 4 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
a(n) = 4 * A136483(n).
a(n) = 2 * A136513(n).
Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (1 - x). - Ilya Gutkovskiy, Nov 24 2021