cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136486 Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.

Original entry on oeis.org

0, 4, 12, 24, 52, 76, 112, 148, 192, 256, 308, 376, 440, 524, 608, 688, 796, 904, 1012, 1124, 1232, 1372, 1508, 1648, 1788, 1952, 2112, 2268, 2448, 2616, 2812, 3000, 3184, 3388, 3608, 3828, 4052, 4272, 4516, 4748, 5008, 5252, 5512, 5784, 6044, 6328, 6600
Offset: 0

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Comments

a(n) is the number of complete squares that fit inside the circle with radius n+1/2, drawn on squared paper.

Examples

			a(1) = 4 because a circle centered at the origin and of radius 1+1/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
		

Crossrefs

Programs

  • Magma
    A136486:= func< n | n eq 0 select 0 else 4*(&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
    [A136486(n): n in [0..100]]; // G. C. Greubel, Jul 30 2023
    
  • Mathematica
    Table[4*Sum[Floor[Sqrt[(n + 1/2)^2 - k^2]], {k,n}], {n, 0, 100}]
  • SageMath
    def A136486(n): return 4*sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
    [A136486(n) for n in range(101)] # G. C. Greubel, Jul 30 2023

Formula

a(n) = 4*Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
a(n) = 4 * A136484(n).
a(n) = 2 * A136515(n).
a(n) = A136485(2*n+1).
Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).