A136486 Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.
0, 4, 12, 24, 52, 76, 112, 148, 192, 256, 308, 376, 440, 524, 608, 688, 796, 904, 1012, 1124, 1232, 1372, 1508, 1648, 1788, 1952, 2112, 2268, 2448, 2616, 2812, 3000, 3184, 3388, 3608, 3828, 4052, 4272, 4516, 4748, 5008, 5252, 5512, 5784, 6044, 6328, 6600
Offset: 0
Examples
a(1) = 4 because a circle centered at the origin and of radius 1+1/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A136486:= func< n | n eq 0 select 0 else 4*(&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >; [A136486(n): n in [0..100]]; // G. C. Greubel, Jul 30 2023
-
Mathematica
Table[4*Sum[Floor[Sqrt[(n + 1/2)^2 - k^2]], {k,n}], {n, 0, 100}]
-
SageMath
def A136486(n): return 4*sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1)) [A136486(n) for n in range(101)] # G. C. Greubel, Jul 30 2023
Comments