A136484 Number of unit square lattice cells inside quadrant of origin centered circle of diameter 2n+1.
0, 1, 3, 6, 13, 19, 28, 37, 48, 64, 77, 94, 110, 131, 152, 172, 199, 226, 253, 281, 308, 343, 377, 412, 447, 488, 528, 567, 612, 654, 703, 750, 796, 847, 902, 957, 1013, 1068, 1129, 1187, 1252, 1313, 1378, 1446, 1511, 1582, 1650, 1725, 1800, 1877, 1955, 2034
Offset: 0
Examples
a(2) = 3 because a circle of radius 2+1/2 in the first quadrant encloses (2,1), (1,1), (1,2).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A136484:= func< n | n eq 0 select 0 else (&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >; [A136484(n): n in [0..100]]; // G. C. Greubel, Jul 29 2023
-
Mathematica
Table[Sum[Floor[Sqrt[(n+1/2)^2 - k^2]], {k,n}], {n,0,100}]
-
SageMath
def A136484(n): return sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1)) [A136484(n) for n in range(101)] # G. C. Greubel, Jul 29 2023
Comments