A136493 Triangle of coefficients of characteristic polynomials of symmetrical pentadiagonal matrices of the type (1,-1,1,-1,1).
1, -1, 1, 1, -2, 0, -1, 3, 0, 0, 1, -4, 1, 2, 0, -1, 5, -3, -5, 1, 1, 1, -6, 6, 8, -5, -2, 1, -1, 7, -10, -10, 14, 4, -4, 0, 1, -8, 15, 10, -29, -4, 12, 0, 0, -1, 9, -21, -7, 50, -4, -30, 4, 4, 0, 1, -10, 28, 0, -76, 28, 61, -20, -15, 2, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 1, -2, 0; -1, 3, 0, 0; 1, -4, 1, 2, 0; -1, 5, -3, -5, 1, 1; 1, -6, 6, 8, -5, -2, 1; -1, 7, -10, -10, 14, 4, -4, 0; 1, -8, 15, 10, -29, -4, 12, 0, 0; -1, 9, -21, -7, 50, -4, -30, 4, 4, 0; 1, -10, 28, 0, -76, 28, 61, -20, -15, 2, 1;
References
- Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, m_]:= Piecewise[{{-1, 1+m==n || m==1+n}, {1, 2+m==n || m==n || m==2+n}}]; MO[d_]:= Table[T[n, m], {n,d}, {m,d}]; CL[n_]:= CoefficientList[CharacteristicPolynomial[MO[n], x], x]; Join[{{1}}, Table[Reverse[CL[n]], {n,10}]]//Flatten (* For the signature of A124698 added by Georg Fischer, Mar 29 2021 : *) Reverse[CoefficientList[CharacteristicPolynomial[{{1,-1,0,0,0}, {-1, 1,-1,0,0}, {0,-1,1,-1,0}, {0,0,-1,1,-1}, {0,0,0,-1,1}}, x], x]]
Formula
Sum_{k=1..n} T(n, k) = (-1)^(n mod 3) * A087509(n+1) + [n=1].
From G. C. Greubel, Aug 01 2023: (Start)
T(n, n) = A011658(n+2).
T(n, 1) = (-1)^(n-1).
T(n, 2) = A181983(n-1).
T(n, 3) = (-1)^(n-3)*A161680(n-3). (End)
Extensions
Edited by Georg Fischer, Mar 29 2021
Comments