A136502 Matrix inverse of triangle A136501, read by rows.
1, -1, 1, 2, -2, 1, -7, 7, -4, 1, 44, -44, 26, -8, 1, -516, 516, -308, 100, -16, 1, 11622, -11622, 6959, -2296, 392, -32, 1, -512022, 512022, -306888, 101754, -17712, 1552, -64, 1, 44588536, -44588536, 26732904, -8877272, 1554404, -139104, 6176, -128, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 2, -2, 1; -7, 7, -4, 1; 44, -44, 26, -8, 1; -516, 516, -308, 100, -16, 1; 11622, -11622, 6959, -2296, 392, -32, 1; -512022, 512022, -306888, 101754, -17712, 1552, -64, 1; 44588536, -44588536, 26732904, -8877272, 1554404, -139104, 6176, -128, 1;
Crossrefs
Programs
-
PARI
{T(n,k)=local(M=matrix(n+1,n+1,r,c,binomial(2^(c-1),r-c)));(M^-1)[n+1,k+1]}
Formula
G.f. for column k: 1 = Sum_{n>=0} T(n+k,k)*x^n*(1+x)^(2^(n+k)).