A136507 a(n) = Sum_{k=0..n} binomial(2^(n-k) + k, n-k).
1, 3, 10, 71, 1925, 203904, 75214965, 94608676477, 409763735870986, 6208539881584781823, 334272186911271376874561, 64832512634295914941490910360, 45811927207957062190019240099653265
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..59
Crossrefs
Programs
-
Magma
[(&+[Binomial(2^k +n-k, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
Maple
A136507:= n-> add(binomial(2^k +n-k, k), k=0..n); seq(A136507(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Mathematica
Table[Sum[Binomial[2^(n-k)+k,n-k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 08 2015 *)
-
PARI
{a(n)=sum(k=0,n,binomial(2^(n-k)+k,n-k))} for(n=0,16, print1(a(n),", "))
-
PARI
/* a(n) = coefficient of x^n in o.g.f. series: */ {a(n)=polcoeff(sum(i=0,n,1/(1-x-2^i*x^2 +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)} for(n=0,16, print1(a(n),", "))
-
Sage
[sum(binomial(2^k +n-k, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Mar 14 2021
Formula
G.f.: A(x) = Sum_{n>=0} (1 - x - 2^n*x^2)^(-1) * log(1 + 2^n*x)^n/n!.
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
a(n) = Sum_{k=0..n} A136555(n-k+1, k). - G. C. Greubel, Mar 14 2021