cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136540 Numbers n such that sigma(n) = 7*phi(n).

Original entry on oeis.org

12, 78, 140, 910, 2214, 4180, 4674, 8008, 16120, 25758, 27170, 46816, 54530, 58302, 94240, 99484, 116116, 200260, 233740, 257140, 264160, 350740, 371898, 383656, 479864, 518022, 523218, 551540, 561340, 575598, 616722, 646646, 785118, 965960, 1027000
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 05 2008

Keywords

Comments

If 2^p-1 is a Mersenne prime greater than 3 then m = 65*2^(p-2)*(2^p-1) is in the sequence (the proof is easy).

Examples

			sigma(12) = 28 = 7*phi(12) so 12 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A136540:=n->`if`(sigma(n)=7*phi(n), n, NULL): seq(A136540(n), n=1..10^5); # Wesley Ivan Hurt, Feb 11 2017
  • Mathematica
    Do[If[DivisorSigma[1,n]==7*EulerPhi[n],Print[n]],{n,600000}]
    (* Second program *)
    Select[Range[10^6], DivisorSigma[1, #] == 7 EulerPhi@ # &] (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    is(n)=sigma(n)==7*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013