cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A136539 Numbers n such that n=6*phi(n)-sigma(n).

Original entry on oeis.org

76, 1264, 327424, 5241856, 83881984, 1342160896, 343597121536
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 05 2008, Feb 01 2008

Keywords

Comments

If 5*2^n-1 is prime (that is, n is in A001770) then m = 2^n*(5*2^n-1) is in the sequence. Proof: 6*phi(m)-sigma(m) = 6*2^(n-1)*(5*2^n-2) -(2^(n+1)-1)*5*2^n = 30*2^(2n-1)-6*2^n-5*2^(2n+1)+5*2^n = 5*2^(2n)-2^n = 2^n(5*2^n-1) = m.
The first seven terms of the sequence are of such form, with n=2, 4, 8, 10, 12, 14, 18. Are all terms of the sequence of this form?
a(8) > 10^12. - Giovanni Resta, Nov 03 2012

Examples

			6*phi(76)-sigma(76)=6*36-140=76 so 76 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[If[n==6*EulerPhi[n]-DivisorSigma[1,n],Print[n]],{n,85000000}]

Formula

a(n) = 2^k*(5*2^k-1) = A084213(k+1) with k = A001770(n), for n = 1,...,7. - M. F. Hasler, Nov 03 2012

Extensions

a(7) from Giovanni Resta, Nov 03 2012

A171256 Numbers n such that sigma(n) = 10*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

168, 270, 570, 2376, 2436, 5016, 6426, 7110, 13566, 15834, 34452, 58520, 62568, 72732, 75210, 113832, 126882, 168756, 169218, 191862, 199368, 223938, 240312, 280488, 308568, 321468, 420888, 449442, 472758, 661848, 673608, 776736, 848540, 854496, 907236
Offset: 1

Views

Author

M. F. Hasler, Mar 19 2010

Keywords

Comments

If n is in this sequence, then for any prime p not dividing n, sigma(np) - 10*phi(np) = 2*sigma(n).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 10 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,10^6, sigma(k) - 10*eulerphi(k) || print1(k", "));

A171257 Numbers n such that sigma(n) = 11*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

2580, 16770, 18630, 28896, 35970, 61404, 66024, 147576, 163944, 215124, 224010, 296184, 399126, 408672, 443394, 464340, 476010, 574308, 856086, 862752, 868428, 931224, 957348, 1004910, 1110186, 1496610, 1721720, 1723290, 1833348, 1971288, 2139852, 2234790
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 11 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,2e6, sigma(k) - 11*eulerphi(k) || print1(k", "));

A171258 Numbers n such that sigma(n) = 13*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

630, 5544, 11160, 18810, 27000, 57000, 80388, 161820, 178020, 182880, 242820, 265608, 388620, 391500, 447678, 465192, 522522, 671760, 690120, 711000, 775170, 826500, 901170, 1051830, 1102290, 1157130, 1418160, 1578330, 1679400, 1812384, 1874520, 1993824
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2*10^6],DivisorSigma[1,#]==13EulerPhi[#]&] (* Harvey P. Dale, Mar 29 2018 *)
  • PARI
    for(k=1,2e6, sigma(k) - 13*eulerphi(k) || print1(k", "));

A171259 Numbers n such that sigma(n) = 14*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

420, 2730, 5940, 12540, 24024, 38610, 48360, 66528, 77490, 81510, 133920, 140448, 141372, 156420, 163590, 282720, 284580, 298452, 348348, 498420, 600780, 681912, 701220, 771420, 792480, 901530, 918918, 1016730, 1052220, 1150968, 1372680, 1439592, 1654620
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 14 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,2e6, sigma(k) - 14*eulerphi(k) || print1(k", "));

A171260 Numbers n such that sigma(n) = 15*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

840, 11880, 12180, 25080, 32130, 67830, 79170, 172260, 282744, 312840, 363660, 569160, 596904, 634410, 696696, 843780, 846090, 959310, 996840, 1119690, 1201560, 1402440, 1542840, 1607340, 1929312, 2104440, 2247210, 2363790, 3309240, 3368040, 3883680
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 15 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,3e6, sigma(k) - 15*eulerphi(k) || print1(k", "));
Showing 1-6 of 6 results.