cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001770 Numbers k such that 5*2^k - 1 is prime.

Original entry on oeis.org

2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 148, 184, 248, 270, 274, 420, 1340, 1438, 1522, 1638, 1754, 1884, 2014, 2170, 2548, 2622, 2652, 2704, 13510, 21738, 25624, 41934, 51478, 52540, 53230, 172300, 245728, 350028, 1194164
Offset: 1

Views

Author

Keywords

Comments

A084213(a(n)+1) is in A136539, for all n. - Farideh Firoozbakht and M. F. Hasler, Nov 03 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002254 (5*2^n+1 is prime), A050522 (primes of the form 5*2^n - 1).

Programs

Extensions

More terms from Hugo Pfoertner, Jun 23 2004
a(40) from the Wilfrid Keller link by Robert Price, Dec 22 2018

A084213 Binomial transform of A081250.

Original entry on oeis.org

1, 4, 18, 76, 312, 1264, 5088, 20416, 81792, 327424, 1310208, 5241856, 20969472, 83881984, 335536128, 1342160896, 5368676352, 21474770944, 85899214848, 343597121536, 1374389010432, 5497557090304, 21990230458368, 87960926027776
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

When 5*2^n - 1 is prime, that is, n is in A001770, then a(n+1) is in A136539. - Farideh Firoozbakht and M. F. Hasler, Nov 03 2012

Programs

  • Magma
    [5*4^n/4-2^n/2+0^n/4: n in [0..30]]; // Vincenzo Librandi, Jun 15 2011
    
  • Maple
    seq(coeff(series((1-2*x+2*x^2)/((1-2*x)*(1-4*x)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[If[n==0, 1, 2^(n-2)*(5*2^n - 2)], {n,0,30}] (* G. C. Greubel, Oct 08 2018 *)
    CoefficientList[Series[(1 - 2*x + 2*x^2)/((1-2*x)*(1-4*x)), {x, 0, 50}], x] (* or *)
    CoefficientList[Series[(5*Exp[4*x] - 2*Exp[2*x] + 1)/4, {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Oct 11 2018 *)
  • PARI
    vector(30, n, n--; (5*4^n - 2^(n+1) + 0^n)/4) \\ G. C. Greubel, Oct 08 2018

Formula

a(n) = (5*4^n - 2^(n+1) + 0^n)/4.
G.f.: (1 - 2*x + 2*x^2)/((1-2*x)*(1-4*x)).
E.g.f.: (5*exp(4*x) - 2*exp(2*x) + 1)/4.
a(n+1) = 2^n*(5*2^n - 1) for all n >= 0. - M. F. Hasler, Nov 03 2012

A114930 Numbers n such that phi(n)=2*reversal(n).

Original entry on oeis.org

6180, 27630, 2914830, 4471740, 27000630, 637062480, 27000000630, 679410757980, 4412687534631, 4421625783741
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 29 2006

Keywords

Comments

If m>1 and p=3*10^m+7 is prime then 90*p is in the sequence because phi(90*p)=phi(90)*phi(p)=24*(3*10^m+6)=2*(36*10^m+72) =2*reversal(27*10^m+63)=2*reversal(9*p)=2*reversal(90*p). Note that 30 divides all known terms of this sequence. Next term is greater than 11*10^7.
a(11) > 10^13. - Giovanni Resta, Aug 12 2019

Examples

			637062480 is a term because phi(637062480) = 2*84260736 = 2*reversal(637062480).
		

Crossrefs

Programs

  • Mathematica
    Do[If[EulerPhi[n]==2*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 110000000}]

Extensions

a(6)-a(8) from Giovanni Resta, Oct 28 2012
a(9)-a(10) from Giovanni Resta, Aug 12 2019

A136538 Numbers n such that reversal(n)=2*phi(n).

Original entry on oeis.org

2, 4, 8, 42, 84, 2763, 4032, 8064, 67314, 86558, 291483, 2700063, 2700000063, 4039603962, 46420566582, 6739054689866
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 04 2008

Keywords

Comments

If m>1 and p=3*10^m+7 is prime then n=9*p is in the sequence (the proof is easy). If n is an even term of the sequence and the largest digit of n is less than 5(3) then 2n is (both numbers 2n & 4n are) in the sequence (the proof is easy).
a(17) > 10^13. - Giovanni Resta, Aug 12 2019

Examples

			Reversal(42)=24=2*12=2*phi(42), so 42 is in the sequence. [Example corrected Jan 25 2008]
		

Crossrefs

Programs

  • Mathematica
    Do[If[FromDigits@Reverse@IntegerDigits@n==2*EulerPhi[n], Print[n]],{n,100000000}]

Extensions

a(13)-a(15) from Giovanni Resta, Oct 28 2012
a(16) from Giovanni Resta, Aug 12 2019

A330412 Integers m such that sigma(m) + sigma(8*m) = 18*m.

Original entry on oeis.org

34, 568, 147328, 603971584, 9663643648, 39582416502784, 696341272098017608537735168, 765635325572111542783369494684623699968, 3615610599582728119969414707766982030374842621310535527825408, 3791242500068058721125048996612134914443116117566314438843154038784
Offset: 1

Views

Author

Jinyuan Wang, Feb 12 2020

Keywords

Comments

This is the case h = 8 of the h-perfect numbers as defined in the Harborth link.

Examples

			34 is a term since sigma(34) + sigma(8*34) = 612, that is 18*34.
		

Crossrefs

Programs

  • PARI
    isok(m) = sigma(m) + sigma(8*m) == 18*m;

Formula

a(n) = 2^A002236(n) * A050524(n).

A330413 Integers m such that sigma(m) + sigma(16*m) = 34*m.

Original entry on oeis.org

268, 4336, 69568, 73014378496, 18691696623616, 80280230208715249156096, 5516815412193254337299253840314368, 22596875928343569838211798520159010816, 106710729501573572985208420194451100911225778218295042768896, 7689318425915528602346510723233181380859942271270135051778769275060995751936
Offset: 1

Views

Author

Jinyuan Wang, Feb 12 2020

Keywords

Comments

This is the case h = 16 of the h-perfect numbers as defined in the Harborth link.

Examples

			268 is a term since sigma(268) + sigma(16*268) = 9112, that is 34*268.
		

Crossrefs

Programs

  • PARI
    isok(m) = sigma(m) + sigma(16*m) == 34*m;

Formula

a(n) = 2^A001774(n) * (17*2^A001774(n) - 1).
Showing 1-6 of 6 results.