A136555 Square array, read by antidiagonals, where T(n,k) = binomial(2^k + n-1, k).
1, 1, 1, 1, 2, 3, 1, 3, 6, 35, 1, 4, 10, 56, 1365, 1, 5, 15, 84, 1820, 169911, 1, 6, 21, 120, 2380, 201376, 67945521, 1, 7, 28, 165, 3060, 237336, 74974368, 89356415775, 1, 8, 36, 220, 3876, 278256, 82598880, 94525795200, 396861704798625, 1, 9, 45, 286, 4845, 324632, 90858768, 99949406400, 409663695276000, 6098989894499557055
Offset: 0
Examples
Square array begins: 1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, ... A136556; 1, 2, 6, 56, 1820, 201376, 74974368, 94525795200, ... A014070; 1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, ... A136505; 1, 4, 15, 120, 3060, 278256, 90858768, 105637584000, ... A136506; 1, 5, 21, 165, 3876, 324632, 99795696, 111600996000, ... ; 1, 6, 28, 220, 4845, 376992, 109453344, 117850651776, ... ; 1, 7, 36, 286, 5985, 435897, 119877472, 124397910208, ... ; 1, 8, 45, 364, 7315, 501942, 131115985, 131254487936, ... ; ... Form column vector R_{n} out of row n of this array; then row n+1 can be generated from row n by: R_{n+1} = P * R_{n} for n>=0, where triangular matrix P = A132625 begins: 1; 1, 1; 2, 1, 1; 14, 4, 1, 1; 336, 60, 8, 1, 1; 25836, 2960, 248, 16, 1, 1; 6251504, 454072, 24800, 1008, 32, 1, 1; ... where row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.
Links
- G. C. Greubel, Antidiagonal rows n = 0..50, flattened
Crossrefs
Programs
-
Magma
[Binomial(2^k +n-k-1, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 14 2021
-
Maple
A136555:= (n,k) -> binomial(2^k +n-k-1, k); seq(seq(A136555(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2021
-
Mathematica
Table[Binomial[2^k +n-k-1, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2021 *)
-
PARI
T(n,k)=binomial(2^k+n-1,k)
-
PARI
/* Coefficient of x^k in g.f. of row n: */ T(n,k)=polcoeff(sum(i=0,k,(1+2^i*x+x*O(x^k))^(n-1)*log((1+2^i*x)+x*O(x^k))^i/i!),k)
-
Sage
flatten([[binomial(2^k +n-k-1, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 14 2021
Formula
G.f. for row n: Sum_{i>=0} (1 + 2^i*x)^(n-1) * log(1 + 2^i*x)^i / i!.
From G. C. Greubel, Mar 14 2021: (Start)
For the square array:
T(n, n) = A060690(n).
For the number triangle:
t(n, k) = T(n-k, k) = binomial(2^k + n - k -1, k).
Sum_{k=0..n} t(n,k) = Sum_{k=0..n} T(n-k, k) = A136557(n). (End)
Comments