A136556 a(n) = binomial(2^n - 1, n).
1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +... A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
Maple
A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Mathematica
f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *) Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
PARI
{a(n) = binomial(2^n-1,n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* As coefficient of x^n in the g.f.: */ {a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)} for(n=0, 20, print1(a(n), ", "))
-
Python
from math import comb def A136556(n): return comb((1<
Chai Wah Wu, Jan 02 2024 -
Sage
[binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2^n,k).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k) * (2^n-1)^k.
G.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n! * (1 + 2^n*x)).
a(n) ~ 2^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016
Extensions
Edited by N. J. A. Sloane, Jan 26 2008
Comments