A136567 a(n) is the number of exponents occurring only once each in the prime factorization of n.
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 2, 0, 0, 0, 2, 1, 2, 2, 0, 1, 0, 1, 2, 0
Offset: 1
Keywords
Examples
4200 = 2^3 * 3^1 * 5^2 * 7^1. The exponents of the prime factorization are therefore 3,1,2,1. The exponents occurring exactly once are 2 and 3. So a(4200) = 2.
Links
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{fi = Sort[Last /@ FactorInteger@n]}, Count[ Count[fi, # ] & /@ Union@fi, 1]]; f[1] = 0; Array[f, 105] (* Robert G. Wilson v, Jan 20 2008 *) Table[Boole[n != 1] Count[Split@ Sort[FactorInteger[n][[All, -1]]], ?(Length@ # == 1 &)], {n, 105}] (* _Michael De Vlieger, Jul 24 2017 *)
-
PARI
A136567(n) = { my(exps=(factor(n)[, 2]), m=prod(i=1, length(exps), prime(exps[i])), f=factor(m)[, 2]); sum(i=1, #f, f[i]==1); }; \\ Antti Karttunen, Jul 24 2017
-
Scheme
(define (A136567 n) (A056169 (A181819 n))) ;; Antti Karttunen, Jul 24 2017
Formula
Extensions
More terms from Robert G. Wilson v, Jan 20 2008
Comments