cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A134193 a(1) = 1; for n>1, a(n) = the smallest positive integer not occurring among the exponents in the prime-factorization of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Leroy Quet, Jan 13 2008

Keywords

Comments

From Amiram Eldar, Jun 30 2025: (Start)
The first position of k = 1, 2, 3, ... is A006939(k-1).
Let d(k) be the asymptotic density of the occurrences of k = 1, 2, ... in this sequence.
d(1) = 0 = the density of the powerful numbers (A001694).
d(2) = Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596) = the density of A337050.
d(3) = Product_{primes p} (1 - 1/p^3 + 1/p^4) - Product_{primes p} (1 - 1/p^2 + 1/p^4) = 0.23548870893364493209...
d(4) = Product_{primes p} (1 - 1/p^4 + 1/p^5) - Product_{primes p} (1 - 1/p^3 + 1/p^5) - Product_{primes p} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5) + Product_{primes p} (1 - 1/p^2 + 1/p^5) = 0.01580134256336122613... .
d(5) = 0.000174471282..., d(6) = 0.000000217516..., etc.
In general, d(k) = Sum_{s subset of {2, 3, ..., k-1}} (-1)^card(s) * Product_{p prime} (1 -Sum_{i=1..card(s)} 1/p^s(i) + 1/p^(s(i)+1) - 1/p^k + 1/p^(k+1)).
The asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2.26761567808299143335... . (End)

Examples

			The prime factorization of 24 is 2^3 * 3^1. The exponents are 3 and 1. Therefore a(24) = 2 is the smallest positive integer not occurring among (3,1).
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Complement[Range[n], Table[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}]][[1]], {n, 2, 120}]] (* Stefan Steinerberger, Jan 21 2008 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)); ve = vecsort(f[,2],,8); k = 1; while(vecsearch(ve, k), k++); k;); \\ Michel Marcus, Jul 28 2017
  • Scheme
    (define (A134193 n) (A257993 (A181819 n))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = A257993(A181819(n)). - Antti Karttunen, Jul 28 2017

Extensions

More terms from Stefan Steinerberger, Jan 21 2008

A136566 a(n) = sum of the exponents occurring only once each in the prime-factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 4, 2, 0, 3, 3, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 4, 1, 0, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 4, 0, 4, 0, 0, 1, 2, 1, 0, 3, 6, 0, 0, 1, 3, 0, 0, 1, 5, 1, 0, 3, 3, 0, 0, 1, 5, 4, 0, 1, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0, 6, 1, 3, 3, 0, 1, 0, 1, 4, 0
Offset: 1

Views

Author

Leroy Quet, Jan 07 2008

Keywords

Examples

			4200 = 2^3 * 3^1 * 5^2 * 7^1. The exponents of the prime factorization are therefore 3,1,2,1. The exponents occurring exactly once are 2 and 3. So a(4200) = 2+3 = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Total@ Flatten@ Select[Split[Sort[FactorInteger[n][[All, -1]]]], Length@ # == 1 &] - Boole[n == 1], {n, 105}] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    a(n) = my(f=factor(n)[,2]); sum(k=1, #f, f[k]*(#select(x->(x==f[k]), f) == 1)); \\ Michel Marcus, Sep 22 2017

Extensions

More terms from Diana L. Mecum, Jul 17 2008

A133924 a(n) = number of exponents occurring only once each in the prime factorization of n!.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 2, 2, 2, 4, 3, 3, 3, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9
Offset: 0

Views

Author

Leroy Quet, Jan 07 2008

Keywords

Examples

			14! is factored into primes as 2^11 * 3^5 * 5^2 * 7^2 * 11^1 * 13^1. The exponent 1 and 2 each occur more than once. So the exponents occurring only once each are 5 and 11. Therefore a(14) = 2.
		

Crossrefs

Programs

  • Maple
    A133924 := proc(n) local ifs,a,i ; if n <= 1 then RETURN(0) ; else ifs := ifactors(n!)[2] ; ifs := sort([seq(op(2,i),i=ifs)]) ; a :=0 ; for i from 1 to nops(ifs) do if i = 1 or op(i,ifs) <> op(i-1,ifs) then if i=nops(ifs) or op(i,ifs) <> op(i+1,ifs) then a := a+1 ; fi ; fi ; od: RETURN(a) ; fi ; end: seq(A133924(n),n=0..120) ; # R. J. Mathar, Jan 30 2008
  • Mathematica
    ne1[n_]:=Count[Tally[Transpose[FactorInteger[n!]][[2]]],?(Last[#] == 1&)]; Join[{0,0},Array[ne1,110,2]] (* _Harvey P. Dale, Aug 21 2011 *)

Formula

a(n) = A136567(n!). - Amiram Eldar, Aug 08 2024

Extensions

More terms from R. J. Mathar, Jan 30 2008
Showing 1-4 of 4 results.