cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136576 Series reversion of x*c(x)/(1 - 2*x), c(x) the g.f. of A000108.

Original entry on oeis.org

0, 1, -3, 10, -36, 136, -532, 2136, -8752, 36448, -153824, 656448, -2827904, 12281088, -53709632, 236337536, -1045603072, 4648306176, -20753783296, 93022530560, -418415228928, 1888065744896, -8544699844608, 38774062837760
Offset: 0

Views

Author

Paul Barry, Jan 08 2008

Keywords

Comments

Hankel transform of a(n+1) is A136577 (conjecture).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+4*x-4*x^2]+4*x^2-2*x-1)/(8*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 22 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((sqrt(1+4*x-4*x^2)+4*x^2-2*x-1)/(8*x^2))) \\ G. C. Greubel, Mar 21 2017

Formula

G.f.: (sqrt(1+4*x-4*x^2)+4*x^2-2*x-1)/(8*x^2).
D-finite with recurrence (n+2)*a(n) + 2*(2*n+1)*a(n-1) + 4*(1-n)*a(n-2) = 0. - R. J. Mathar, Dec 11 2011
a(n) ~ (-1)^(n+1) * (3+2*sqrt(2)) * sqrt(4-2*sqrt(2)) * 2^(n-2) * (1+sqrt(2))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 22 2014
For n >= 1, a(n) = (-1)^(n+1) * (1/2) * A071356(n) = (-1)^(n+1) * Sum_{k = 0..floor(n/2)} binomial(n, 2*k)*Catalan(k)*2^(n-k-1). The recurrence given above follows from this using the WZ algorithm. - Peter Bala, Apr 28 2024