cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136577 Conjectured Hankel transform of A136576(n+1).

Original entry on oeis.org

1, 1, 0, -16, -256, -4096, 0, 16777216, 4294967296, 1099511627776, 0, -1152921504606846976, -4722366482869645213696, -19342813113834066795298816, 0, 5192296858534827628530496329220096, 340282366920938463463374607431768211456
Offset: 0

Views

Author

Paul Barry, Jan 08 2008

Keywords

Comments

a(n+1) is the Hankel transform of A086616. [From Paul Barry, Jun 03 2009]

Formula

a(n)=4^floor(n^2/2)*((1/2-sqrt(2)/2)*cos(3*pi*n/4)+(1/2+sqrt(2)/2)*cos(pi*n/4));

A069731 Number of unicursal planar maps with n edges rooted at a vertex of odd valency (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 5, 28, 168, 1056, 6864, 45760, 311168, 2149888, 15049216, 106502144, 760729600, 5477253120, 39710085120, 289650032640, 2124100239360, 15651264921600, 115819360419840, 860372391690240
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Maple
    Z:=-(1-4*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=3..24); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[2^(n-2) CatalanNumber[n+1], {n, 1, 19}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n) = 2^(n-2)*C_(n+1), where C_n stands for the Catalan numbers (A000108).
a(n) = A003645(n+2)/4.
D-finite with recurrence: 4*(2*n+1)*a(n-1) - (n+2)*a(n) = 0, a(1) = 1. - Georg Fischer, May 23 2021
From Peter Bala, Apr 29 2024: (Start)
a(n) = Sum_{k = 0..n} binomial(n, 2*k)*Catalan(k)*4^(n-k-1).
O.g.f.: A(x) = (1 - 4*x - 8*x^2 - sqrt(1 - 8*x))/(32*x^2).
A(x) = series reversion of x*c(-x)/(1 + 4*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and c(-x)/(1 + 4*x) is the g.f. of (-1)^n*A000346(n). (End)
Showing 1-2 of 2 results.