cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086616 Partial sums of the large Schroeder numbers (A006318).

Original entry on oeis.org

1, 3, 9, 31, 121, 515, 2321, 10879, 52465, 258563, 1296281, 6589727, 33887465, 175966211, 921353249, 4858956287, 25786112993, 137604139011, 737922992937, 3974647310111, 21493266631001, 116642921832963, 635074797251889, 3467998148181631, 18989465797056721, 104239408386028035
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Row sums of triangle A086614. - Paul D. Hanna, Jul 24 2003
Hankel transform is A136577(n+1). - Paul Barry, Jun 03 2009

Examples

			a(1) = 2 + 1 = 3;
a(2) = 3 + 4 + 2 = 9;
a(3) = 4 + 10 + 12 + 5 = 31;
a(4) = 5 + 20 + 42 + 40 + 14 = 121.
		

Crossrefs

Cf. A086614 (triangle), A086615 (antidiagonal sums).
Cf. A006318.

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1-x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-6*x+x^2))/(2*x*(1-x))) \\ Joerg Arndt, May 10 2013
  • Sage
    # Generalized algorithm of L. Seidel
    def A086616_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]); h += 1;
            b = not b
        return R
    A086616_list(23) # Peter Luschny, Jun 02 2012
    

Formula

G.f.: A(x) = 1/(1 - x)^2 + x*A(x)^2.
a(1) = 1 and a(n) = n + Sum_{i=1..n-1} a(i)*a(n-i) for n >= 2. - Benoit Cloitre, Mar 16 2004
G.f.: (1 - x - sqrt(1 - 6*x + x^2))/(2*x*(1 - x)). Cf. A001003. - Ralf Stephan, Mar 23 2004
a(n) = Sum_{k=0..n} C(n+k+1, 2*k+1) * A000108(k). - Paul Barry, Jun 03 2009
Recurrence: (n+1)*a(n) = (7*n-2)*a(n-1) - (7*n-5)*a(n-2) + (n-2)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
A(x) = 1/(1 - x)^2 * c(x/(1-x^2)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Aug 29 2024

Extensions

Name changed using a comment of Emeric Deutsch from Dec 20 2004. - Peter Luschny, Jun 03 2012

A136576 Series reversion of x*c(x)/(1 - 2*x), c(x) the g.f. of A000108.

Original entry on oeis.org

0, 1, -3, 10, -36, 136, -532, 2136, -8752, 36448, -153824, 656448, -2827904, 12281088, -53709632, 236337536, -1045603072, 4648306176, -20753783296, 93022530560, -418415228928, 1888065744896, -8544699844608, 38774062837760
Offset: 0

Views

Author

Paul Barry, Jan 08 2008

Keywords

Comments

Hankel transform of a(n+1) is A136577 (conjecture).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+4*x-4*x^2]+4*x^2-2*x-1)/(8*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 22 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((sqrt(1+4*x-4*x^2)+4*x^2-2*x-1)/(8*x^2))) \\ G. C. Greubel, Mar 21 2017

Formula

G.f.: (sqrt(1+4*x-4*x^2)+4*x^2-2*x-1)/(8*x^2).
D-finite with recurrence (n+2)*a(n) + 2*(2*n+1)*a(n-1) + 4*(1-n)*a(n-2) = 0. - R. J. Mathar, Dec 11 2011
a(n) ~ (-1)^(n+1) * (3+2*sqrt(2)) * sqrt(4-2*sqrt(2)) * 2^(n-2) * (1+sqrt(2))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 22 2014
For n >= 1, a(n) = (-1)^(n+1) * (1/2) * A071356(n) = (-1)^(n+1) * Sum_{k = 0..floor(n/2)} binomial(n, 2*k)*Catalan(k)*2^(n-k-1). The recurrence given above follows from this using the WZ algorithm. - Peter Bala, Apr 28 2024
Showing 1-2 of 2 results.