cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A136580 Row sums of triangle A136579.

Original entry on oeis.org

1, 1, 3, 7, 27, 127, 747, 5167, 41067, 368047, 3669867, 40284847, 482671467, 6267305647, 87660962667, 1313941673647, 21010450850667, 357001369769647, 6423384156578667, 122002101778601647, 2439325392333218667
Offset: 0

Views

Author

Gary W. Adamson, Jan 09 2008

Keywords

Examples

			a(4) = 27 = sum of row 4 terms, triangle A136579: (1 + 0 + 2 + 0 + 24) = 0! + 2! + 4!.
a(5) = 127 = sum of row 5 terms, triangle A136579: (0 + 1 + 0 + 6 + 0 + 120) = 1! + 3! + 5!
G.f. = 1 + x + 3*x^2 + 7*x^3 + 27*x^4 + 127*x^5 + 747*x^6 + 5167*x^7 + 41067*x^8 + ...
		

Crossrefs

Programs

  • Maple
    A136580 := proc(n)
        add( (n-2*i)!,i=0..floor(n/2) ) ;
    end proc: # R. J. Mathar, Jun 04 2021
  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n-1] + a[n-2] - n a[n-3]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)

Formula

G.f.: 2/(1-x^2)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: Q(0)/(1-x^2), where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
From Vladimir Reshetnikov, Oct 29 2015: (Start):
a(n) = (-1)^n*exp(1)*Gamma(0, 1)/2 - Re(Gamma(0, -1))*exp(-1)/2 + (n+2)!*((-1)^n*Re(Gamma(-n-2, -1))*exp(-1)-Gamma(-n-2, 1)*exp(1))/2, where Gamma(a, x) is the upper incomplete Gamma function.
D-finite with recurrence: a(0) = 1, a(1) = 1, a(2) = 3, a(n) = n*a(n-1) + a(n-2) - n*a(n-3).
E.g.f.: 1/(1-x) + (exp(x-1)*(Ei(1)-Ei(1-x)) + exp(1-x)*(Ei(x-1)-Ei(-1)))/2, where Ei(x) is the exponential integral.
a(n+1)-a(n) = A153229(n+2) = (-1)^(n+1)*A058006(n+1).
(End)
0 = a(n)*(+a(n+1) - a(n+2) - a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) - a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n>=0. - Michael Somos, Oct 29 2015

A137948 Triangle read by rows, A000012 * A136579.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 3, 4, 6, 5, 4, 6, 12, 24, 6, 5, 8, 18, 48, 120, 7, 6, 10, 24, 72, 240, 720, 8, 7, 12, 30, 96, 360, 1440, 5040, 9, 8, 14, 36, 120, 480, 2160, 10080, 40320, 10, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880
Offset: 0

Views

Author

Gary W. Adamson, Feb 28 2008

Keywords

Comments

Row sums = A014144 starting (1, 3, 7, 17, 51, 205, ...).
T(n,k) = A245334(n,k) / A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Aug 31 2014

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 2,  2;
  4, 3,  4,  6;
  5, 4,  6, 12, 24;
  6, 5,  8, 18, 48, 120;
  7, 6, 10, 24, 72, 240, 720;
  ...
		

Crossrefs

Programs

  • Haskell
    a137948 n k = a137948_tabl !! n !! k
    a137948_row n = a137948_tabl !! n
    a137948_tabl = zipWith (zipWith div) a245334_tabl a007318_tabl
    -- Reinhard Zumkeller, Aug 31 2014

Formula

As infinite lower triangular matrices, A000012 * A136579, where A000012 = (1; 1,1; 1,1,1; ...) and A136579 = (1; 1,1; 1,1,2; 1,1,2,6; 1,1,2,6,24; ...).
T(n,k) = (n+1-k) * k! for 0 <= k <= n. - Werner Schulte, Oct 06 2020

Extensions

Offset changed by Reinhard Zumkeller, Aug 31 2014

A138015 Triangle read by rows, antidiagonals of an array formed by A000012 * A136579. Replace the term "n" in the correlation triangle A003983 with A003422(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 10, 4, 2, 1, 1, 2, 4, 10, 10, 4, 2, 1, 1, 2, 4, 10, 34, 10, 4, 2, 1, 1, 2, 4, 10, 34, 34, 10, 4, 2, 1, 1, 2, 4, 10, 34, 154, 34, 10, 4, 2, 1, 1, 2, 4, 10, 34, 154, 154, 34, 10, 4, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2008

Keywords

Comments

A003422 = (0, 1, 2, 4, 10, 34, 154, ...).
Row sums = A138016: (1, 2, 4, 6, 10, 14, 24, 34, 68, 102, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 2,  1;
  1, 2, 4,  2,  1;
  1, 2, 4,  4,  2,  1;
  1, 2, 4, 10,  4,  2,  1;
  1, 2, 4, 10, 10,  4,  2, 1;
  1, 2, 4, 10, 34, 10,  4, 2, 1;
  1, 2, 4, 10, 34, 34, 10, 4, 2, 1;
  ...
		

Crossrefs

Extensions

Example corrected by Philippe Deléham, Feb 18 2013
Showing 1-3 of 3 results.