cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003422 Left factorials: !n = Sum_{k=0..n-1} k!.

Original entry on oeis.org

0, 1, 2, 4, 10, 34, 154, 874, 5914, 46234, 409114, 4037914, 43954714, 522956314, 6749977114, 93928268314, 1401602636314, 22324392524314, 378011820620314, 6780385526348314, 128425485935180314, 2561327494111820314, 53652269665821260314, 1177652997443428940314
Offset: 0

Views

Author

Keywords

Comments

Number of {12, 12*, 1*2, 21*}- and {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the number of permutations on [n] that avoid the patterns 2n1 and n12. An occurrence of a 2n1 pattern is a (scattered) subsequence a-n-b with a > b. - David Callan, Nov 29 2007
Also, numbers left over after the following sieving process: At step 1, keep all numbers of the set N = {0, 1, 2, ...}. In step 2, keep only every second number after a(2) = 2: N' = {0, 1, 2, 4, 6, 8, 10, ...}. In step 3, keep every third of the numbers following a(3) = 4, N" = {0, 1, 2, 4, 10, 16, 22, ...}. In step 4, keep every fourth of the numbers beyond a(4) = 10: {0, 1, 2, 4, 10, 34, 58, ...}, and so on. - M. F. Hasler, Oct 28 2010
If s(n) is a second-order recurrence defined as s(0) = x, s(1) = y, s(n) = n*(s(n - 1) - s(n - 2)), n > 1, then s(n) = n*y - n*a(n - 1)*x. - Gary Detlefs, May 27 2012
a(n) is the number of lists of {1, ..., n} with (1st element) = (smallest element) and (k-th element) <> (k-th smallest element) for k > 1, where a list means an ordered subset. a(4) = 10 because we have the lists: [1], [2], [3], [4], [1, 3, 2], [1, 4, 2], [1, 4, 3], [2, 4, 3], [1, 3, 4, 2], [1, 4, 2, 3]. Cf. A000262. - Geoffrey Critzer, Oct 04 2012
Consider a tree graph with 1 vertex. Add an edge to it with another vertex. Now add 2 edges with vertices to this vertex, and then 3 edges to each open vertex of the tree (not the first one!), and the next stage is to add 4 edges, and so on. The total number of vertices at each stage give this sequence (see example). - Jon Perry, Jan 27 2013
Additive version of the superfactorials A000178. - Jon Perry, Feb 09 2013
Repunits in the factorial number system (see links). - Jon Perry, Feb 17 2013
Whether n|a(n) only for 1 and 2 remains an open problem. A published 2004 proof was retracted in 2011. This is sometimes known as Kurepa's conjecture. - Robert G. Wilson v, Jun 15 2013, corrected by Jeppe Stig Nielsen, Nov 07 2015.
!n is not always squarefree for n > 3. Miodrag Zivkovic found that 54503^2 divides !26541. - Arkadiusz Wesolowski, Nov 20 2013
a(n) gives the position of A007489(n) in A227157. - Antti Karttunen, Nov 29 2013
Matches the total domination number of the Bruhat graph from n = 2 to at least n = 5. - Eric W. Weisstein, Jan 11 2019
For the connection with Kurepa trees, see A. Petojevic, The {K_i(z)}{i=1..oo} functions, Rocky Mtn. J. Math., 36 (2006), 1637-1650. - _Aleksandar Petojevic, Jun 29 2018
This sequence converges in the p-adic topology, for every prime number p. - Harry Richman, Aug 13 2024

Examples

			!5 = 0! + 1! + 2! + 3! + 4! = 1 + 1 + 2 + 6 + 24 = 34.
x + 2*x^2 + 4*x^3 + 10*x^4 + 34*x^5 + 154*x^6 + 874*x^7 + 5914*x^8 + 46234*x^9 + ...
From _Arkadiusz Wesolowski_, Aug 06 2012: (Start)
Illustration of initial terms:
.
. o        o         o            o                         o
.          o         o            o                         o
.                   o o          o o                       o o
.                              ooo ooo                   ooo ooo
.                                             oooo oooo oooo oooo oooo oooo
.
. 1        2         4            10                        34
.
(End)
The tree graph. The total number of vertices at each stage is 1, 2, 4, 10, ...
    0 0
    |/
    0-0
   /
0-0
   \
    0-0
    |\
    0 0
- _Jon Perry_, Jan 27 2013
		

References

  • Richard K. Guy, Unsolved Problems Number Theory, Section B44.
  • D. Kurepa, On the left factorial function !n. Math. Balkanica 1 1971 147-153.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003422 n = a003422_list !! n
    a003422_list = scanl (+) 0 a000142_list
    -- Reinhard Zumkeller, Dec 27 2011
    
  • Maple
    A003422 := proc(n) local k; add(k!,k=0..n-1); end proc:
    # Alternative, using the Charlier polynomials A137338:
    C := proc(n, x) option remember; if n > 0 then (x-n)*C(n-1, x) - n*C(n-2, x)
    elif n = 0 then 1 else 0 fi end: A003422 := n -> (-1)^(n+1)*C(n-1, -1):
    seq(A003422(n), n=0..22); # Peter Luschny, Nov 28 2018
    # third Maple program:
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+(n-1)!) end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 24 2022
  • Mathematica
    Table[Sum[i!, {i, 0, n - 1}], {n, 0, 20}] (* Stefan Steinerberger, Mar 31 2006 *)
    Join[{0}, Accumulate[Range[0, 25]!]] (* Harvey P. Dale, Nov 19 2011 *)
    a[0] = 0; a[1] = 1; a[n_] := a[n] = n*a[n - 1] - (n - 1)*a[n - 2]; Array[a, 23, 0] (* Robert G. Wilson v, Jun 15 2013 *)
    a[n_] := (-1)^n*n!*Subfactorial[-n-1]-Subfactorial[-1]; Table[a[n] // FullSimplify, {n, 0, 22}] (* Jean-François Alcover, Jan 09 2014 *)
    RecurrenceTable[{a[n] == n a[n - 1] - (n - 1) a[n - 2], a[0] == 0, a[1] == 1}, a, {n, 0, 10}] (* Eric W. Weisstein, Jan 11 2019 *)
    Range[0, 20]! CoefficientList[Series[(ExpIntegralEi[1] - ExpIntegralEi[1 - x]) Exp[x - 1], {x, 0, 20}], x] (* Eric W. Weisstein, Jan 11 2019 *)
    Table[(-1)^n n! Subfactorial[-n - 1] - Subfactorial[-1], {n, 0, 20}] // FullSimplify (* Eric W. Weisstein, Jan 11 2019 *)
    Table[(I Pi + ExpIntegralEi[1] + (-1)^n n! Gamma[-n, -1])/E, {n, 0, 20}] // FullSimplify (* Eric W. Weisstein, Jan 11 2019 *)
  • Maxima
    makelist(sum(k!,k,0,n-1), n, 0, 20); /* Stefano Spezia, Jan 11 2019 */
    
  • PARI
    a003422(n)=sum(k=0,n-1,k!) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from itertools import count, islice
    def A003422_gen(): # generator of terms
        yield from (0,1)
        c, f = 1, 1
        for n in count(1):
            yield (c:= c + (f:= f*n))
    A003422_list = list(islice(A003422_gen(),20)) # Chai Wah Wu, Jun 22 2022
    
  • Python
    def a(n):
        if n == 0: return 0
        s = f = 1
        for k in range(1, n):
            f *= k
            s += f
        return round(s)
    print([a(n) for n in range(24)])  # Peter Luschny, Mar 05 2024

Formula

D-finite with recurrence: a(n) = n*a(n - 1) - (n - 1)*a(n - 2). - Henry Bottomley, Feb 28 2001
Sequence is given by 1 + 1*(1 + 2*(1 + 3*(1 + 4*(1 + ..., terminating in n*(1)...). - Jon Perry, Jun 01 2004
a(n) = Sum_{k=0..n-1} P(n, k) / C(n, k). - Ross La Haye, Sep 20 2004
E.g.f.: (Ei(1) - Ei(1 - x))*exp(-1 + x) where Ei(x) is the exponential integral. - Djurdje Cvijovic and Aleksandar Petojevic, Apr 11 2000
a(n) = Integral_{x = 0..oo} [(x^n - 1)/(x - 1)]*exp(-x) dx. - Gerald McGarvey, Oct 12 2007
A007489(n) = !(n + 1) - 1 = a(n + 1) - 1. - Artur Jasinski, Nov 08 2007. Typos corrected by Antti Karttunen, Nov 29 2013
Starting (1, 2, 4, 10, 34, 154, ...), = row sums of triangle A135722. - Gary W. Adamson, Nov 25 2007
a(n) = a(n - 1) + (n - 1)! for n >= 2. - Jaroslav Krizek, Jun 16 2009
E.g.f. A(x) satisfies the differential equation A'(x) = A(x) + 1/(1 - x). - Vladimir Kruchinin, Jan 19 2011
a(n + 1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = A182386(k) for k = 0, 1, ..., n. - Michael Somos, Apr 27 2012
From Sergei N. Gladkovskii, May 09 2013 to Oct 22 2013: (Start)
Continued fractions:
G.f.: x/(1-x)*Q(0) where Q(k) = 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/Q(k+1))).
G.f.: G(0)*x/(1-x)/2 where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))).
G.f.: 2*x/(1-x)/G(0) where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: W(0)*x/(1+sqrt(x))/(1-x) where W(k) = 1 + sqrt(x)/(1 - sqrt(x)*(k+1)/(sqrt(x)*(k+1) + 1/W(k+1))).
G.f.: B(x)*(1+x)/(1-x) where B(x) is the g.f. of A153229.
G.f.: x/(1-x) + x^2/(1-x)/Q(0) where Q(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+1)*(2*k+2)/(1 - 2*x*(2*k+2) - x^2*(2*k+2)*(2*k+3)/Q(k+1)).
G.f.: x*(1+x)*B(x) where B(x) is the g.f. of A136580. (End)
a(n) = (-1)^(n+1)*C(n-1, -1) where C(n, x) are the Charlier polynomials (with parameter a=1) as given in A137338. (Evaluation at x = 1 gives A232845.) - Peter Luschny, Nov 28 2018
a(n) = (a(n-3)*(n-2)^2*(n-3)! + a(n-1)^2)/a(n-2) (empirical). - Gary Detlefs, Feb 25 2022
a(n) = signum(n)/b(1,n) with b(i,n) = i - [iMohammed Bouras, Sep 07 2022
Sum_{n>=1} 1/a(n) = A357145. - Amiram Eldar, Oct 01 2022

A058006 Alternating factorials: 0! - 1! + 2! - ... + (-1)^n n!

Original entry on oeis.org

1, 0, 2, -4, 20, -100, 620, -4420, 35900, -326980, 3301820, -36614980, 442386620, -5784634180, 81393657020, -1226280710980, 19696509177020, -335990918918980, 6066382786809020, -115578717622022980, 2317323290554617020, -48773618881154822980
Offset: 0

Views

Author

Henry Bottomley, Nov 13 2000

Keywords

Comments

From Harry Richman, Aug 13 2024: (Start)
Euler argued this sequence converges to 0.596347... (A073003 = Gompertz's constant); see Lagarias Section 2.5.
This sequence converges in the p-adic topology, for every prime number p. (End)

Examples

			a(5) = 0!-1!+2!-3!+4!-5! = 1-1+2-6+24-120 = -100.
G.f. = 1 + 2*x^2 - 4*x^3 + 20*x^4 - 100*x^5 + 620*x^6 - 4420*x^7 + 35900*x^8 + ...
		

Crossrefs

Cf. A000142, A003422, A005165, A153229 (absolute values), A136580.
Partial sums of A133942.

Programs

  • Haskell
    a058006 n = a058006_list !! n
    a058006_list = scanl1 (+) a133942_list
    -- Reinhard Zumkeller, Mar 02 2014
  • Mathematica
    a[ n_] := Sum[ (-1)^k k!, {k, 0, n}]; (* Michael Somos, Jan 28 2014 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^k * k!)}; /* Michael Somos, Jan 28 2014 */
    

Formula

a(n) = (-1)^n n! + a(n-1) = A005165(n)(-1)^n + 1.
a(n) = -(n-1)*a(n-1) + n*a(n-2), n>0.
E.g.f.: d/dx ((GAMMA(0,1)-GAMMA(0,1+x))*exp(1+x)). - Max Alekseyev, Jul 05 2010
G.f.: G(0)/(1-x), where G(k)= 1 - (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
0 = a(n)*(-a(n+1) + a(n+3)) + a(n+1)*(2*a(n+1) - 2*a(n+2) -a(n+3)) + a(n+2)*(a(n+2)) if n>=-1. - Michael Somos, Jan 28 2014
a(n) = exp(1)*Gamma(0,1) + (-1)^n*exp(1)*(n+1)!*Gamma(-n-1,1), where Gamma(a,x) is the upper incomplete Gamma function. - Vladimir Reshetnikov, Oct 29 2015

Extensions

Corrections and more information from Michael Somos, Feb 19 2003

A153229 a(0) = 0, a(1) = 1, and for n >= 2, a(n) = (n-1) * a(n-2) + (n-2) * a(n-1).

Original entry on oeis.org

0, 1, 0, 2, 4, 20, 100, 620, 4420, 35900, 326980, 3301820, 36614980, 442386620, 5784634180, 81393657020, 1226280710980, 19696509177020, 335990918918980, 6066382786809020, 115578717622022980, 2317323290554617020, 48773618881154822980, 1075227108896452857020
Offset: 0

Views

Author

Shaojun Ying (dolphinysj(AT)gmail.com), Dec 21 2008

Keywords

Comments

Previous name was: Weighted Fibonacci numbers.
From Peter Bala, Aug 18 2013: (Start)
The sequence occurs in the evaluation of the integral I(n) := Integral_{u >= 0} exp(-u)*u^n/(1 + u) du.
The result is I(n) = A153229(n) + (-1)^n*I(0), where I(0) = Integral_{u >= 0} exp(-u)/(1 + u) du = 0.5963473623... is known as Gompertz's constant. See A073003.
Note also that I(n) = n!*Integral_{u >= 0} exp(-u)/(1 + u)^(n+1) du. (End)
((-1)^(n+1))*a(n) = p(n,-1), where the polynomials p are defined at A248664. - Clark Kimberling, Oct 11 2014

Examples

			a(20) = 19 * a(18) + 18 * a(19) = 19 * 335990918918980 + 18 * 6066382786809020 = 6383827459460620 + 109194890162562360 = 115578717622022980
		

Crossrefs

First differences of A136580.
Column k=0 of A303697 (for n>0).

Programs

  • C
    unsigned long a(unsigned int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return (n - 1) * a(n - 2) + (n - 2) * a(n - 1); }
    
  • Maple
    t1 := sum(n!*x^n, n=0..100): F := series(t1/(1+x), x, 100): for i from 0 to 40 do printf(`%d, `, i!-coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<2, n, (n-1)*a(n-2) +(n-2)*a(n-1)) end:
    seq(a(n), n=0..25); # Alois P. Heinz, May 24 2013
  • Mathematica
    Join[{a = 0}, Table[b = n! - a; a = b, {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==(n-1)a[n-2]+(n-2)a[n-1]},a,{n,30}] (* Harvey P. Dale, May 01 2020 *)
  • PARI
    a(n)=if(n,my(t=(-1)^n);-t-sum(i=1,n-1,t*=-i),0); \\ Charles R Greathouse IV, Jun 28 2011

Formula

a(0) = 0, a(1) = 1, and for n >= 2, a(n) = (n-1) * a(n-2) + (n-2) * a(n-1).
For n>=1, a(n) = A058006(n-1) * (-1)^(n-1).
G.f.: G(0)*x/(1+x)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: 2*x/(1+x)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: W(0)*x/(1+sqrt(x))/(1+x), where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+1)/(sqrt(x)*(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 17 2013
a(n) ~ (n-1)! * (1 - 1/n + 1/n^3 + 1/n^4 - 2/n^5 - 9/n^6 - 9/n^7 + 50/n^8 + 267/n^9 + 413/n^10), where numerators are Rao Uppuluri-Carpenter numbers, see A000587. - Vaclav Kotesovec, Mar 16 2015
E.g.f.: exp(1)/exp(x)*(Ei(1, 1-x)-Ei(1, 1)). - Alois P. Heinz, Jul 05 2018
a(n) = Sum_{k = 0..n-1} (-1)^(n-k-1) * k!. - Peter Bala, Dec 05 2024

Extensions

Edited by Max Alekseyev, Jul 05 2010
Better name by Joerg Arndt, Aug 17 2013

A358499 a(n) = Sum_{k=0..floor(n/4)} (n-4*k)!.

Original entry on oeis.org

1, 1, 2, 6, 25, 121, 722, 5046, 40345, 363001, 3629522, 39921846, 479041945, 6227383801, 87181920722, 1307714289846, 20923268929945, 355693655479801, 6402460887648722, 121646408123121846, 2432922931445569945, 51091297865364919801, 1124007130238495328722
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (n-4*k)!);

Formula

a(n) = n * a(n-1) + a(n-4) - n * a(n-5) for n > 4.
a(n) ~ n! * (1 + 1/n^4 + 6/n^5 + 25/n^6 + 90/n^7 + 302/n^8 + 994/n^9 + 3487/n^10 + ...), for coefficients see A099948. - Vaclav Kotesovec, Nov 24 2022

A358498 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)!.

Original entry on oeis.org

1, 1, 2, 7, 25, 122, 727, 5065, 40442, 363607, 3633865, 39957242, 479365207, 6230654665, 87218248442, 1308153733207, 20929020542665, 355774646344442, 6403681859461207, 121666029429374665, 2433257782822984442, 51097345853568901207, 1124122393807037054665
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)!);

Formula

a(n) = n * a(n-1) + a(n-3) - n * a(n-4) for n > 3.
a(n) ~ n! * (1 + 1/n^3 + 3/n^4 + 7/n^5 + 16/n^6 + 46/n^7 + 203/n^8 + 1178/n^9 + 7242/n^10 + ...), for coefficients see A143817. - Vaclav Kotesovec, Nov 24 2022

A358500 a(n) = Sum_{k=0..floor(n/5)} (n-5*k)!.

Original entry on oeis.org

1, 1, 2, 6, 24, 121, 721, 5042, 40326, 362904, 3628921, 39917521, 479006642, 6227061126, 87178654104, 1307677996921, 20922829805521, 355687907102642, 6402379932789126, 121645187587486104, 2432903315854636921, 51090963094539245521, 1124001083465514782642
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-5*k)!);

Formula

a(n) = n * a(n-1) + a(n-5) - n * a(n-6) for n > 5.
a(n) ~ n! * (1 + 1/n^5 + 10/n^6 + 65/n^7 + 350/n^8 + 1701/n^9 + 7771/n^10 + 34150/n^11 + 146905/n^12 + ...), the coefficients are Sum_{j=0..(k-4)/5} Stirling2(k,5*j+4). - Vaclav Kotesovec, Nov 24 2022

A358607 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-2*k)!.

Original entry on oeis.org

1, 1, 1, 5, 23, 115, 697, 4925, 39623, 357955, 3589177, 39558845, 475412423, 6187461955, 86702878777, 1301486906045, 20836087009223, 354385941189955, 6381537618718777, 121290714467642045, 2426520470557921223, 50969651457241797955, 1121574207307049758777
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*(n-2*k)!);

Formula

a(n) = n * a(n-1) - a(n-2) + n * a(n-3) for n > 2.
a(n) ~ n! * (1 - 1/n^2 - 1/n^3 + 5/n^5 + 23/n^6 + 74/n^7 + 161/n^8 - 57/n^9 - 3466/n^10 - ...), for coefficients see A121868. - Vaclav Kotesovec, Nov 25 2022
a(2n) = 1+A215096(2n). a(2n+1) = A215096(2n+1). - R. J. Mathar, Jun 14 2024

A136579 Triangle read by rows: A128174 * A136572.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 0, 6, 1, 0, 2, 0, 24, 0, 1, 0, 6, 0, 120, 1, 0, 2, 0, 24, 0, 720, 0, 1, 0, 6, 0, 120, 0, 5040, 1, 0, 2, 0, 24, 0, 720, 0, 40320
Offset: 0

Views

Author

Gary W. Adamson, Jan 09 2008

Keywords

Comments

Row sums = A136580: 1, 1, 3, 7, 27, 127, ...

Examples

			First few rows of the triangle:
  1;
  0, 1;
  1, 0, 2;
  0, 1, 0, 6;
  1, 0, 2, 0, 24;
  0, 1, 0, 6,  0, 120;
  1, 0, 2, 0, 24,   0, 720;
  ...
		

Crossrefs

Formula

A128174 * A136572 Triangle, even rows = even n! interspersed with zeros. Odd n rows, = odd n! interspersed with zeros.
T(2*i,2*k) = (2*k)! = A010050(k). T(2*i+1,2*k+1) = (2*k+1)! = A009445(k). - R. J. Mathar, Jun 04 2021

A173279 Irregular triangle read by rows: M(n,k) = (n-2*k)!, k=0..floor(n/2).

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 24, 2, 1, 120, 6, 1, 720, 24, 2, 1, 5040, 120, 6, 1, 40320, 720, 24, 2, 1, 362880, 5040, 120, 6, 1, 3628800, 40320, 720, 24, 2, 1, 39916800, 362880, 5040, 120, 6, 1, 479001600, 3628800, 40320, 720, 24, 2, 1, 6227020800, 39916800, 362880, 5040, 120, 6, 1, 87178291200
Offset: 0

Views

Author

Gary W. Adamson, Feb 14 2010

Keywords

Comments

In the limit as j-> infinity, the power M^j approaches the limit described in A173280.
Row sums: sum_{k=0..n/2} M(n,k) = A136580(n).

Examples

			Triangle starts in row n=0 as:
1;
1;
2, 1;
6, 1;
24, 2, 1;
120, 6, 1;
720, 24, 2, 1;
5040, 120, 6, 1;
40320, 720, 24, 2, 1;
362880, 5040, 120, 6, 1;
3628800, 40320, 720, 24, 2, 1;
39916800, 362880, 5040, 120, 6, 1;
479001600, 3628800, 40320, 720, 24, 2, 1;
...
		

Crossrefs

Programs

  • Maple
    A173279 := proc(n,k) factorial(n-2*k) ; end proc: seq(seq(A173279(n,k),k=0..floor(n/2)),n=0..20) ; # R. J. Mathar, Feb 22 2010

Extensions

keyword tabl replaced by tabf, R. J. Mathar, Feb 22 2010

A341900 Partial sums of A005165.

Original entry on oeis.org

0, 1, 2, 7, 26, 127, 746, 5167, 41066, 368047, 3669866, 40284847, 482671466, 6267305647, 87660962666, 1313941673647, 21010450850666, 357001369769647, 6423384156578666, 122002101778601647, 2439325392333218666, 51212944273488041647, 1126440053169940898666
Offset: 0

Views

Author

R. J. Mathar, Jun 04 2021

Keywords

Crossrefs

Formula

a(n)-a(n-1) = A005165(n).
a(n) = Sum_{i=0..floor((n-1)/2)} (n-2*i)!.
a(n) = A136580(n) - A059841(n).
D-finite with recurrence a(n) -n*a(n-1) -a(n-2) +n*a(n-3)=0.
a(n) = n! + a(n-2) for n >= 2. - Alois P. Heinz, Jun 04 2021
Showing 1-10 of 10 results.