cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A136580 Row sums of triangle A136579.

Original entry on oeis.org

1, 1, 3, 7, 27, 127, 747, 5167, 41067, 368047, 3669867, 40284847, 482671467, 6267305647, 87660962667, 1313941673647, 21010450850667, 357001369769647, 6423384156578667, 122002101778601647, 2439325392333218667
Offset: 0

Views

Author

Gary W. Adamson, Jan 09 2008

Keywords

Examples

			a(4) = 27 = sum of row 4 terms, triangle A136579: (1 + 0 + 2 + 0 + 24) = 0! + 2! + 4!.
a(5) = 127 = sum of row 5 terms, triangle A136579: (0 + 1 + 0 + 6 + 0 + 120) = 1! + 3! + 5!
G.f. = 1 + x + 3*x^2 + 7*x^3 + 27*x^4 + 127*x^5 + 747*x^6 + 5167*x^7 + 41067*x^8 + ...
		

Crossrefs

Programs

  • Maple
    A136580 := proc(n)
        add( (n-2*i)!,i=0..floor(n/2) ) ;
    end proc: # R. J. Mathar, Jun 04 2021
  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n-1] + a[n-2] - n a[n-3]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)

Formula

G.f.: 2/(1-x^2)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: Q(0)/(1-x^2), where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
From Vladimir Reshetnikov, Oct 29 2015: (Start):
a(n) = (-1)^n*exp(1)*Gamma(0, 1)/2 - Re(Gamma(0, -1))*exp(-1)/2 + (n+2)!*((-1)^n*Re(Gamma(-n-2, -1))*exp(-1)-Gamma(-n-2, 1)*exp(1))/2, where Gamma(a, x) is the upper incomplete Gamma function.
D-finite with recurrence: a(0) = 1, a(1) = 1, a(2) = 3, a(n) = n*a(n-1) + a(n-2) - n*a(n-3).
E.g.f.: 1/(1-x) + (exp(x-1)*(Ei(1)-Ei(1-x)) + exp(1-x)*(Ei(x-1)-Ei(-1)))/2, where Ei(x) is the exponential integral.
a(n+1)-a(n) = A153229(n+2) = (-1)^(n+1)*A058006(n+1).
(End)
0 = a(n)*(+a(n+1) - a(n+2) - a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) - a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n>=0. - Michael Somos, Oct 29 2015

A099948 Number of partitions of n such that the number of blocks is congruent to 3 mod 4.

Original entry on oeis.org

1, 6, 25, 90, 302, 994, 3487, 15210, 92489, 713988, 5979480, 50184316, 412595913, 3317961318, 26241631409, 205918294518, 1622545217510, 13045429410974, 109152638729439, 969395726250226, 9255388478615017, 94973500733767432, 1034488089509527120
Offset: 3

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Examples

			a(11)=92489 because stirling2(11,3)+stirling2(11,7)+stirling2(11,11)=92489.
		

Crossrefs

Programs

  • Maple
    seq(sum(stirling2(n,3+4*k),k=0..(n-3)/4),n=3..26); # Emeric Deutsch, Dec 15 2004
    # second Maple program:
    with(combinat):
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=3, 1, 0),
         `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1, irem(m+j, 4)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=3..30);  # Alois P. Heinz, Sep 17 2015
  • Mathematica
    Table[Sum[StirlingS2[n, 3+4*k], {k, 0, (n-3)/4}], {n, 3, 26}] (* Jean-François Alcover, Feb 18 2016, after Emeric Deutsch *)

Formula

G.f.: sum(x^k/[(1-x)(1-2x)...(1-kx)], k=3 (mod 4)). - Emeric Deutsch, Dec 15 2004

Extensions

More terms from Emeric Deutsch, Dec 15 2004

A358498 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)!.

Original entry on oeis.org

1, 1, 2, 7, 25, 122, 727, 5065, 40442, 363607, 3633865, 39957242, 479365207, 6230654665, 87218248442, 1308153733207, 20929020542665, 355774646344442, 6403681859461207, 121666029429374665, 2433257782822984442, 51097345853568901207, 1124122393807037054665
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)!);

Formula

a(n) = n * a(n-1) + a(n-3) - n * a(n-4) for n > 3.
a(n) ~ n! * (1 + 1/n^3 + 3/n^4 + 7/n^5 + 16/n^6 + 46/n^7 + 203/n^8 + 1178/n^9 + 7242/n^10 + ...), for coefficients see A143817. - Vaclav Kotesovec, Nov 24 2022

A358500 a(n) = Sum_{k=0..floor(n/5)} (n-5*k)!.

Original entry on oeis.org

1, 1, 2, 6, 24, 121, 721, 5042, 40326, 362904, 3628921, 39917521, 479006642, 6227061126, 87178654104, 1307677996921, 20922829805521, 355687907102642, 6402379932789126, 121645187587486104, 2432903315854636921, 51090963094539245521, 1124001083465514782642
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-5*k)!);

Formula

a(n) = n * a(n-1) + a(n-5) - n * a(n-6) for n > 5.
a(n) ~ n! * (1 + 1/n^5 + 10/n^6 + 65/n^7 + 350/n^8 + 1701/n^9 + 7771/n^10 + 34150/n^11 + 146905/n^12 + ...), the coefficients are Sum_{j=0..(k-4)/5} Stirling2(k,5*j+4). - Vaclav Kotesovec, Nov 24 2022

A358609 a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-4*k)!.

Original entry on oeis.org

1, 1, 2, 6, 23, 119, 718, 5034, 40297, 362761, 3628082, 39911766, 478961303, 6226658039, 87174663118, 1307634456234, 20922310926697, 355681201437961, 6402286531064882, 121643792774375766, 2432881085865713303, 51090586490508002039, 1123994325491076615118
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*(n-4*k)!);

Formula

a(n) = n * a(n-1) - a(n-4) + n * a(n-5) for n > 4.
a(n) ~ n! * (1 - 1/n^4 - 6/n^5 - 25/n^6 - 90/n^7 - 300/n^8 - 938/n^9 - 2563/n^10 - ...). - Vaclav Kotesovec, Nov 25 2022
Showing 1-5 of 5 results.