A136586 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,n-2).
0, 0, 1, -1, 0, 1, 0, -4, 0, 1, 6, 0, -8, 0, 1, 0, 28, 0, -13, 0, 1, -40, 0, 78, 0, -19, 0, 1, 0, -246, 0, 171, 0, -26, 0, 1, 336, 0, -888, 0, 325, 0, -34, 0, 1, 0, 2616, 0, -2455, 0, 561, 0, -43, 0, 1, -3456, 0, 11670, 0, -5745, 0, 903, 0, -53, 0, 1
Offset: 1
Examples
{0}, {0, 1}, {-1, 0, 1}, {0, -4, 0, 1}, {6, 0, -8, 0, 1}, {0, 28, 0, -13, 0, 1}, {-40, 0, 78, 0, -19, 0, 1}, {0, -246, 0, 171, 0, -26, 0,1}, {336, 0, -888, 0, 325, 0, -34, 0, 1}, {0, 2616, 0, -2455, 0, 561, 0, -43, 0, 1}, {-3456, 0, 11670, 0, -5745, 0, 903, 0, -53, 0, 1}
Crossrefs
Cf. A137286.
Programs
-
Mathematica
P[x, 0] = 1; P[x, 1] = x; P[x, -1] = 0; P[x, -2] = -1; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, n - 2]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]
Comments