cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136664 Triangular vector sequence as weighted conversion between A137286 and A049310.

Original entry on oeis.org

1, 0, 2, 8, 0, 4, 0, 20, 0, 8, 128, 0, 48, 0, 16, 0, 352, 0, 112, 0, 32, 3072, 0, 928, 0, 256, 0, 64, 0, 8928, 0, 2368, 0, 576, 0, 128, 98304, 0, 24960, 0, 5888, 0, 1280, 0, 256, 0, 296448, 0, 67584, 0, 14336, 0, 2816, 0, 512, 3932160, 0, 863232, 0, 178176, 0, 34304
Offset: 1

Views

Author

Roger L. Bagula, Apr 01 2008

Keywords

Comments

Row sums:
{1, 2, 12, 28, 192, 496, 4320, 12000, 130688, 381696, 5015040};
Suppose that you have a Chebyshev-like recursion: (one type) P[x,n]=x*P[x,n-1]-P[x,n-2]
and an Hermite: Q[x,n]=x*Q[x,n-1]-n*Q[x,n-2]
You can define a set of Matrices on the Coefficient list vectors:
vp[n]=M[n].vq[n]
vq[n].vq[n]t=delta[i,j]
vp[n].vq[n]t=M[n]
where M[n] is a diagonal matrix (a vector)
Then a new set of polynomials is obtained.

Examples

			{1},
{0, 2},
{8, 0, 4},
{0, 20, 0, 8},
{128, 0, 48, 0, 16},
{0, 352, 0, 112, 0, 32},
{3072, 0, 928, 0, 256, 0, 64},
{0, 8928, 0, 2368, 0, 576, 0, 128},
{98304, 0, 24960, 0, 5888, 0, 1280, 0, 256},
{0, 296448, 0, 67584, 0, 14336, 0, 2816, 0, 512},
{3932160, 0, 863232, 0, 178176, 0, 34304, 0, 6144, 0, 1024}
		

Crossrefs

Programs

  • Mathematica
    Clear[P, x, n, a] (*Hermite : A137286*) P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; a1 = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; (* Chebyshev : other kind : A049310*) Clear[B, x, n] B[x, 0] = 1; B[x, 1] = x; B[x_, n_] := B[x, n] = x*B[x, n - 1] - B[x, n - 2]; a = Table[CoefficientList[B[x, n], x], {n, 0, 10}]; (* converter?*) b = Table[Table[If[a[[n]][[ i]] == 0, 0, 2^(n - 1)*a1[[n]][[i]]/a[[n]][[i]]], {i, 1, Length[a[[n]]]}], {n, 1, Length[a]}]; Flatten[b]

Formula

T(n,m)=If[A137286(m)>0,A049310(n)/A137286(m),0] Out_vector=2^(n-1)*T(n,m)