cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137110 Numbers k such that k and k^2 use only the digits 2, 5, 6 and 7.

Original entry on oeis.org

5, 25, 26, 75, 76, 275, 525, 526, 725, 7525, 27525, 72576, 256266, 276725, 725725, 276726675, 756652275
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
If it exists, a(18) > 10^34. - David A. Corneth and Michael S. Branicky, May 25 2021
From Pontus von Brömssen, May 01 2024: (Start)
a(18) > 2*10^43 (if it exists).
If k = x*10^m is a term where 1 < x < 10 and k is not 25 or 76, then 2.5622756725665225652662672277265762225525525 < x < 7.5665565267667667557762552666757226626652626.
(End)

Examples

			276726675^2 = 76577652656555625.
		

Programs

  • PARI
    \\ See PARI link. David A. Corneth, May 25 2021
  • Python
    def auptod(maxdigits, only="2567"):
      aset, digset, valid = set(), set(only), set(only)
      for e in range(1, maxdigits+1):
        newvalid = set()
        for tstr in valid:
          t = int(tstr)
          if set(str(t**2)) <= digset: aset.add(t)
          for d in digset:
            dtstr = d + tstr
            dt = int(dtstr)
            remstr = str(dt**2)[-e-1:]
            if set(remstr) <= digset: newvalid.add(dtstr)
        valid = newvalid
      return sorted(aset)
    print(auptod(16)) # Michael S. Branicky, May 25 2021