cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155559 a(n) = 2*A131577(n).

Original entry on oeis.org

0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Jan 24 2009

Keywords

Comments

Essentially the same as A131577, A046055, A011782, A000079 and A034008.

Crossrefs

Programs

Formula

a(n) = A000079(n), n>0.
a(n) = (-1)^(n+1)*A084633(n+1).
a(n) + A155543(n) = 2^n+4^n = A063376(n) = 2*A007582(n) =2*A137173(2n+1).
Conjecture: a(n) = A090129(n+3)-A090129(n+2).
G.f.: 2*x/(1-2*x). - R. J. Mathar, Jul 23 2009
E.g.f.: exp(2*x) - 1. - Stefano Spezia, Aug 26 2025

Extensions

Edited by R. J. Mathar, Jul 23 2009
Extended by Omar E. Pol, Nov 19 2012

A137171 Interleaved reading of A000749 and its first to third differences.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 1, 4, 6, 4, 2, 10, 10, 6, 6, 20, 16, 12, 16, 36, 28, 28, 36, 64, 56, 64, 72, 120, 120, 136, 136, 240, 256, 272, 256, 496, 528, 528, 496, 1024, 1056, 1024, 992, 2080, 2080, 2016, 2016, 4160, 4096, 4032, 4096, 8256, 8128, 8128
Offset: 0

Views

Author

Paul Curtz, May 11 2008

Keywords

Comments

A000749 is identical to its fourth differences, which implies that the 2nd differences equal the 5th, the 3rd differences the 6th and so on and implies that each of the sequences of these differences obeys the recurrence a(n)=4a(n-1)-6a(n-2)+4a(n-3), n > 3.
The table containing A000749 and its first differences (essentially A038505), 2nd differences (A038504) and 3rd differences (A038503) as the 4 rows is
O, 0, 0, 1, 4, 10, 20, 36, 64, ...
0, 0, 1, 3, 6, 10, 16, 28, 56, ...
0, 1, 2, 3, 4, 6, 12, 28, 64, ...
1, 1, 1, 1, 2, 6, 16, 36, 72, ...
Columns sums are 1, 2, 4, 8, 16, 32 ... = 2^n =A000079. The sequence reads this table column by column.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 1},LinearRecurrence[{0, 0, 0, 4, 0, 0, 0, -6, 0, 0, 0, 4},{0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 1},59]] (* Ray Chandler, Sep 23 2015 *)

Extensions

Edited by R. J. Mathar, Jun 28 2008
Showing 1-2 of 2 results.