A137216 Erlang C queues type triangular sequence based on A122525.
1, 1, 1, 2, 2, 3, 6, 9, 22, 41, 24, 64, 266, 708, 1486, 120, 625, 4536, 17457, 48088, 108129, 720, 7776, 100392, 563088, 2043864, 5709120, 13399176, 5040, 117649, 2739472, 22516209, 107972560, 375217945, 1053757584, 2544404617, 40320, 2097152, 89020752, 1076444064, 6831882992, 29566405440, 99420254352, 279663595232, 688833593904
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 2, 3; 6, 9, 22, 41; 24, 64, 266, 708, 1486; 120, 625, 4536, 17457, 48088, 108129; 720, 7776, 100392, 563088, 2043864, 5709120, 13399176;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[k==0, n!, If[k==1, n^(n-1), (1/n)*(k^(n+1)*n^n - n!*(k-1)*Sum[n^j*k^j/j!, {j,0,n}])]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 06 2022 *)
-
Sage
@CachedFunction def A137216(n, k): if (k==0): return factorial(n) elif (k==1): return n^(n-1) else: return (1/n)*(k^(n+1)*n^n - factorial(n)*(k-1)*sum((n*k)^j/factorial(j) for j in (0..n))) flatten([[A137216(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 06 2022
Formula
T(n, k) = (1/n)*( n^n * k^(n+1) - n! * (k - 1) * Sum_{j=0..n} (n*k)^j/j! ), with T(n, 0) = n! and T(n, 1) = n^(n-1).
Extensions
Edited by G. C. Greubel, Jan 06 2022