cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331277 Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 1, 1, 0, 1, 62, 31, 1, 1, 0, 1, 900, 2649, 160, 1, 1, 0, 1, 16824, 441061, 116360, 841, 1, 1, 0, 1, 384668, 121105865, 231173330, 5364701, 4494, 1, 1, 0, 1, 10398480, 49615422851, 974787170226, 131147294251, 256452714, 24319, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with k edges and no isolated vertices. When n=2 these objects are graphs.

Examples

			Array begins:
====================================================================
n\k | 0 1    2         3              4            5           6
----+---------------------------------------------------------------
  0 | 1 1    0         0              0            0           0 ...
  1 | 1 1    1         1              1            1           1 ...
  2 | 1 1    6        62            900        16824      384668 ...
  3 | 1 1   31      2649         441061    121105865 49615422851 ...
  4 | 1 1  160    116360      231173330 974787170226 ...
  5 | 1 1  841   5364701   131147294251 ...
  6 | 1 1 4494 256452714 78649359753286 ...
  ...
The A(2,2) = 6 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121251, A136245.
Columns k=0..3 are A000012, A000012, A047665, A137219.
The version with nonnegative integer entries is A331278.
The version with not necessarily distinct columns is A330942.
Cf. A262809 (unrestricted version), A331315, A331639.

Programs

  • PARI
    T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j,n), k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n, k) = Sum_{j=0..n*k} binomial(binomial(j,n),k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A330942(n, j).
A331639(n) = Sum_{d|n} A(n/d, d).

A137220 a(n) = (A126086(n) + 3*A001850(n) + 2)/6.

Original entry on oeis.org

1, 4, 75, 2712, 116681, 5366384, 256461703, 12582521536, 629390010177, 31955248465164, 1641724961412515, 85159811886281576, 4452782349821587705, 234393562420377364008, 12409423916987553634575, 660253088667255226947072
Offset: 0

Views

Author

Vladeta Jovovic, Mar 06 2008, Mar 16 2008

Keywords

Crossrefs

Column k=3 of A330942.

Programs

  • Maple
    A126086 := proc(n) local x,y,z ; coeftayl(coeftayl(coeftayl(1/(1-x-y-z-x*y-x*z-y*z-x*y*z),z=0,n),y=0,n),x=0,n) ; end: A001850 := proc(n) local k ; add(binomial(n,k)*binomial(n+k,k),k=0..n) ; end: A137220 := proc(n) (A126086(n)+3*A001850(n)+2)/6 ; end: seq(A137220(n),n=0..30) ; # R. J. Mathar, Apr 01 2008
  • Mathematica
    T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
    Table[T[n, 3], {n, 0, 15}] (* Jean-François Alcover, Apr 10 2020, after Andrew Howroyd *)
  • PARI
    a(n) = {sum(j=0, 3*n, binomial(binomial(j,n)+2, 3) * sum(i=j, 3*n, (-1)^(i-j)*binomial(i,j)))} \\ Andrew Howroyd, Feb 09 2020
    
  • Sage
    @CachedFunction
    def A137220(n): return round( -sum( binomial(-binomial(j, n), 3)/2^(j+1) for j in (0..500) ) )
    [A137220(n) for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = -Sum_{m>=0} binomial(-binomial(m,n),3)/2^(m+1).
a(n) = A137219(n) + A001850(n). - R. J. Mathar, Apr 01 2008
a(n) = Sum_{j=0..3*n} binomial(binomial(j,n)+2, 3) * (Sum_{i=j..3*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020

Extensions

More terms from R. J. Mathar, Apr 01 2008
Showing 1-2 of 2 results.