cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137234 Expansion of g.f. 1/((1-x)^2*(1 - 3*x + 2*x^2 - x^3)).

Original entry on oeis.org

1, 5, 16, 43, 107, 257, 607, 1422, 3318, 7727, 17978, 41810, 97214, 226014, 525439, 1221519, 2839710, 6601549, 15346765, 35676927, 82938821, 192809396, 448227496, 1042002541, 2422362052, 5631308596, 13091204252, 30433357644, 70748973053
Offset: 0

Views

Author

Richard Choulet, Apr 05 2008

Keywords

Comments

Previous name: Transform of A000292 without the initial 0 by the T_{0,0} transformation (see link).
Partial sums of A137229. - R. J. Mathar, Nov 04 2008

Crossrefs

Programs

  • Magma
    I:=[1,5,16,43,107]; [n le 5 select I[n] else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4) +Self(n-5): n in [1..41]]; // G. C. Greubel, Apr 19 2021
    
  • Mathematica
    LinearRecurrence[{5,-9,8,-4,1}, {1,5,16,43,107}, 41] (* G. C. Greubel, Apr 19 2021 *)
    CoefficientList[Series[1/((1-x)^2(1-3x+2x^2-x^3)),{x,0,30}],x] (* Harvey P. Dale, Jun 07 2021 *)
  • Sage
    @CachedFunction
    def A095263(n): return sum(binomial(n+j+2, 3*j+2) for j in (0..n//2))
    def A137234(n): return -(n+3) + sum( (-1)^j*(4-j)*A095263(n-j) for j in (0..2))
    [A137234(n) for n in (0..40)] # G. C. Greubel, Apr 19 2021

Formula

O.g.f: 1/((1-z)^2*(1 - 3*z + 2*z^2 - z^3)).
a(n) = -(n+3) + Sum_{j=0..2} (-1)^j*(4-j)*A095263(n-j). - G. C. Greubel, Apr 19 2021