cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137249 Expansion of g.f. z*(2-2*z+z^2+z^3)/((1+z)*(1-3*z+2*z^2-z^3)).

Original entry on oeis.org

2, 2, 7, 15, 37, 84, 197, 456, 1062, 2467, 5737, 13335, 31002, 72069, 167542, 389486, 905447, 2104907, 4893317, 11375580, 26445017, 61477204, 142917162, 332242091, 772369157, 1795540447, 4174125122, 9703663625, 22558281082
Offset: 1

Views

Author

Richard Choulet, Apr 05 2008

Keywords

Comments

Previous name was: Transform of A033999 by the T_{0,1} transformation (see link).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (2-2*x+x^2+x^3)/((1+x)*(1-3*x+2*x^2-x^3)) )); // G. C. Greubel, Apr 11 2021
    
  • Maple
    m:= 40;
    S:= series( x*(2-2*x+x^2+x^3)/((1+x)*(1-3*x+2*x^2-x^3)), x, m+1);
    seq(coeff(S, x, j), j = 1..m); # G. C. Greubel, Apr 11 2021
  • Mathematica
    LinearRecurrence[{2,1,-1,1},{2,2,7,15},30] (* Harvey P. Dale, Feb 02 2012 *)
  • Sage
    def A132749_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (2-2*x+x^2+x^3)/((1+x)*(1-3*x+2*x^2-x^3)) ).list()
    A132749_list(40) # G. C. Greubel, Apr 11 2021

Formula

O.g.f: z*(2 -2*z +z^2 +z^3)/( (1+z)*(1-3*z+2*z^2-z^3) ).
a(n+4) = 2*a(n+3) + a(n+2) - a(n+1) + a(n).
From G. C. Greubel, Apr 11 2021: (Start)
a(n) = (4*(-1)^n + 10*A095263(n) - 12*A095263(n-1) + 11*A095263(n-2))/7.
a(n) = (1/7)*( 4*(-1)^n + Sum_{j=0..floor(n/2)} ( 10*binomial(n+j+2, 3*j+2) - 12*binomial(n+j+1, 3*j+2) + 11*binomial(n+j, 3*j+2) ) ). (End)

Extensions

New name using g.f. from Joerg Arndt, Apr 19 2021