cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137251 Triangle T(n,k) read by rows: number of k X k triangular matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 26, 15, 1, 1, 15, 71, 98, 31, 1, 1, 21, 161, 425, 342, 63, 1, 1, 28, 322, 1433, 2285, 1138, 127, 1, 1, 36, 588, 4066, 11210, 11413, 3670, 255, 1, 1, 45, 1002, 10165, 44443, 79781, 54073, 11586, 511, 1, 1, 55, 1617, 23056, 150546, 434638, 528690, 246409, 36038, 1023, 1
Offset: 1

Views

Author

Vladeta Jovovic, Mar 11 2008

Keywords

Comments

Row sums are A022493.
Number of ascent sequences of length n with k-1 ascents, see example. [Joerg Arndt, Nov 03 2012]
Number of interval orders on n elements having exactly k maximal antichains. Also, number of interval orders on n elements having an interval representation with k distinct endpoints, but not with k-1 distinct endpoints. Also, number of interval orders on n elements whose elements define k distinct strict down-sets (a strict down-set defined by an element x of a poset (P,<) is the set {y in P: yVít Jelínek, Sep 06 2014

Examples

			Triangle starts:
01:  1,
02:  1,  1,
03:  1,  3,    1,
04:  1,  6,    7,     1,
05:  1, 10,   26,    15,      1,
06:  1, 15,   71,    98,     31,       1,
07:  1, 21,  161,   425,    342,      63,       1,
08:  1, 28,  322,  1433,   2285,    1138,     127,       1,
09:  1, 36,  588,  4066,  11210,   11413,    3670,     255,       1,
10:  1, 45, 1002, 10165,  44443,   79781,   54073,   11586,     511,      1,
11:  1, 55, 1617, 23056, 150546,  434638,  528690,  246409,   36038,   1023,    1,
12:  1, 66, 2497, 48400, 451515, 1968580, 3895756, 3316193, 1090517, 110930, 2047, 1,
...
From _Joerg Arndt_, Nov 03 2012: (Start)
The 53 ascent sequences of length 5 together with their numbers of ascents are (dots for zeros):
01:  [ . . . . . ]   0      28:  [ . 1 1 . 1 ]   2
02:  [ . . . . 1 ]   1      29:  [ . 1 1 . 2 ]   2
03:  [ . . . 1 . ]   1      30:  [ . 1 1 1 . ]   1
04:  [ . . . 1 1 ]   1      31:  [ . 1 1 1 1 ]   1
05:  [ . . . 1 2 ]   2      32:  [ . 1 1 1 2 ]   2
06:  [ . . 1 . . ]   1      33:  [ . 1 1 2 . ]   2
07:  [ . . 1 . 1 ]   2      34:  [ . 1 1 2 1 ]   2
08:  [ . . 1 . 2 ]   2      35:  [ . 1 1 2 2 ]   2
09:  [ . . 1 1 . ]   1      36:  [ . 1 1 2 3 ]   3
10:  [ . . 1 1 1 ]   1      37:  [ . 1 2 . . ]   2
11:  [ . . 1 1 2 ]   2      38:  [ . 1 2 . 1 ]   3
12:  [ . . 1 2 . ]   2      39:  [ . 1 2 . 2 ]   3
13:  [ . . 1 2 1 ]   2      40:  [ . 1 2 . 3 ]   3
14:  [ . . 1 2 2 ]   2      41:  [ . 1 2 1 . ]   2
15:  [ . . 1 2 3 ]   3      42:  [ . 1 2 1 1 ]   2
16:  [ . 1 . . . ]   1      43:  [ . 1 2 1 2 ]   3
17:  [ . 1 . . 1 ]   2      44:  [ . 1 2 1 3 ]   3
18:  [ . 1 . . 2 ]   2      45:  [ . 1 2 2 . ]   2
19:  [ . 1 . 1 . ]   2      46:  [ . 1 2 2 1 ]   2
20:  [ . 1 . 1 1 ]   2      47:  [ . 1 2 2 2 ]   2
21:  [ . 1 . 1 2 ]   3      48:  [ . 1 2 2 3 ]   3
22:  [ . 1 . 1 3 ]   3      49:  [ . 1 2 3 . ]   3
23:  [ . 1 . 2 . ]   2      50:  [ . 1 2 3 1 ]   3
24:  [ . 1 . 2 1 ]   2      51:  [ . 1 2 3 2 ]   3
25:  [ . 1 . 2 2 ]   2      52:  [ . 1 2 3 3 ]   3
26:  [ . 1 . 2 3 ]   3      53:  [ . 1 2 3 4 ]   4
27:  [ . 1 1 . . ]   1
There is 1 ascent sequence with no ascent, 10 with one ascent, etc., giving the fourth row [1, 10, 26, 15, 1].
(End)
		

References

  • Peter C. Fishburn, Interval Orders and Interval Graphs: Study of Partially Ordered Sets, John Wiley & Sons, 1985.

Crossrefs

Cf. A022493 (number of ascent sequences), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).
T(2n,n) gives A357141.

Programs

  • Maple
    b:= proc(n, i, t) option remember; local j; if n<1 then [0$t, 1]
          else []; for j from 0 to t+1 do zip((x, y)->x+y, %,
          b(n-1, j, t+`if`(j>i, 1, 0)), 0) od; % fi
        end:
    T:= n-> b(n-1, 0, 0)[]:
    seq(T(n), n=1..12);  # Alois P. Heinz, May 20 2013
  • Mathematica
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]]; b[n_, i_, t_] := b[n, i, t] = Module[{j, pc}, If[n<1, Append[Array[0&, t], 1], pc = {}; For[j = 0, j <= t+1, j++, pc = zip[Plus, pc, b[n-1, j, t+If[j>i, 1, 0]], 0]]; pc]]; T[n_] := b[n-1, 0, 0]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 29 2014, after Alois P. Heinz *)

Formula

G.f.: Sum_{n,k>=1} T(n,k)x^n y^k = Sum_{n>=1} y^n Product_{i=1..n} (1-(1-x)^i)/(y+(1-x)^i-y*(1-x)^i). See Jelínek's paper, Corollary 2.5. - Vít Jelínek, Sep 06 2014