A137251 Triangle T(n,k) read by rows: number of k X k triangular matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 26, 15, 1, 1, 15, 71, 98, 31, 1, 1, 21, 161, 425, 342, 63, 1, 1, 28, 322, 1433, 2285, 1138, 127, 1, 1, 36, 588, 4066, 11210, 11413, 3670, 255, 1, 1, 45, 1002, 10165, 44443, 79781, 54073, 11586, 511, 1, 1, 55, 1617, 23056, 150546, 434638, 528690, 246409, 36038, 1023, 1
Offset: 1
Examples
Triangle starts: 01: 1, 02: 1, 1, 03: 1, 3, 1, 04: 1, 6, 7, 1, 05: 1, 10, 26, 15, 1, 06: 1, 15, 71, 98, 31, 1, 07: 1, 21, 161, 425, 342, 63, 1, 08: 1, 28, 322, 1433, 2285, 1138, 127, 1, 09: 1, 36, 588, 4066, 11210, 11413, 3670, 255, 1, 10: 1, 45, 1002, 10165, 44443, 79781, 54073, 11586, 511, 1, 11: 1, 55, 1617, 23056, 150546, 434638, 528690, 246409, 36038, 1023, 1, 12: 1, 66, 2497, 48400, 451515, 1968580, 3895756, 3316193, 1090517, 110930, 2047, 1, ... From _Joerg Arndt_, Nov 03 2012: (Start) The 53 ascent sequences of length 5 together with their numbers of ascents are (dots for zeros): 01: [ . . . . . ] 0 28: [ . 1 1 . 1 ] 2 02: [ . . . . 1 ] 1 29: [ . 1 1 . 2 ] 2 03: [ . . . 1 . ] 1 30: [ . 1 1 1 . ] 1 04: [ . . . 1 1 ] 1 31: [ . 1 1 1 1 ] 1 05: [ . . . 1 2 ] 2 32: [ . 1 1 1 2 ] 2 06: [ . . 1 . . ] 1 33: [ . 1 1 2 . ] 2 07: [ . . 1 . 1 ] 2 34: [ . 1 1 2 1 ] 2 08: [ . . 1 . 2 ] 2 35: [ . 1 1 2 2 ] 2 09: [ . . 1 1 . ] 1 36: [ . 1 1 2 3 ] 3 10: [ . . 1 1 1 ] 1 37: [ . 1 2 . . ] 2 11: [ . . 1 1 2 ] 2 38: [ . 1 2 . 1 ] 3 12: [ . . 1 2 . ] 2 39: [ . 1 2 . 2 ] 3 13: [ . . 1 2 1 ] 2 40: [ . 1 2 . 3 ] 3 14: [ . . 1 2 2 ] 2 41: [ . 1 2 1 . ] 2 15: [ . . 1 2 3 ] 3 42: [ . 1 2 1 1 ] 2 16: [ . 1 . . . ] 1 43: [ . 1 2 1 2 ] 3 17: [ . 1 . . 1 ] 2 44: [ . 1 2 1 3 ] 3 18: [ . 1 . . 2 ] 2 45: [ . 1 2 2 . ] 2 19: [ . 1 . 1 . ] 2 46: [ . 1 2 2 1 ] 2 20: [ . 1 . 1 1 ] 2 47: [ . 1 2 2 2 ] 2 21: [ . 1 . 1 2 ] 3 48: [ . 1 2 2 3 ] 3 22: [ . 1 . 1 3 ] 3 49: [ . 1 2 3 . ] 3 23: [ . 1 . 2 . ] 2 50: [ . 1 2 3 1 ] 3 24: [ . 1 . 2 1 ] 2 51: [ . 1 2 3 2 ] 3 25: [ . 1 . 2 2 ] 2 52: [ . 1 2 3 3 ] 3 26: [ . 1 . 2 3 ] 3 53: [ . 1 2 3 4 ] 4 27: [ . 1 1 . . ] 1 There is 1 ascent sequence with no ascent, 10 with one ascent, etc., giving the fourth row [1, 10, 26, 15, 1]. (End)
References
- Peter C. Fishburn, Interval Orders and Interval Graphs: Study of Partially Ordered Sets, John Wiley & Sons, 1985.
Links
- Alois P. Heinz, Rows n = 1..141, flattened (Rows n = 1..15 from Joerg Arndt)
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, and Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, arXiv:0806.0666 [math.CO], 2008.
- Giulio Cerbai, Modified ascent sequences and Bell numbers, arXiv:2305.10820 [math.CO], 2023. See p. 8.
- William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics Volume 20, Issue 1 (2013), #P76.
- Matthieu Dien, Antoine Genitrini, and Frederic Peschanski, A Combinatorial Study of Async/Await Processes, Conf.: 19th Int'l Colloq. Theor. Aspects of Comp. (2022), (Analytic) Combinatorics of concurrent systems.
- M. Dukes, V Jelínek, and M. Kubitzke Composition Matrices, (2+2)-Free Posets and their Specializations, Electronic Journal of Combinatorics, Volume 18, Issue 1, 2011, Paper #P44.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614; arXiv preprint, arXiv:1106.2261 [math.CO], 2011.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; local j; if n<1 then [0$t, 1] else []; for j from 0 to t+1 do zip((x, y)->x+y, %, b(n-1, j, t+`if`(j>i, 1, 0)), 0) od; % fi end: T:= n-> b(n-1, 0, 0)[]: seq(T(n), n=1..12); # Alois P. Heinz, May 20 2013
-
Mathematica
zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]]; b[n_, i_, t_] := b[n, i, t] = Module[{j, pc}, If[n<1, Append[Array[0&, t], 1], pc = {}; For[j = 0, j <= t+1, j++, pc = zip[Plus, pc, b[n-1, j, t+If[j>i, 1, 0]], 0]]; pc]]; T[n_] := b[n-1, 0, 0]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 29 2014, after Alois P. Heinz *)
Formula
G.f.: Sum_{n,k>=1} T(n,k)x^n y^k = Sum_{n>=1} y^n Product_{i=1..n} (1-(1-x)^i)/(y+(1-x)^i-y*(1-x)^i). See Jelínek's paper, Corollary 2.5. - Vít Jelínek, Sep 06 2014
Comments