cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137255 a(n) = 2*a(n-1) + 4*a(n-2) - 6*a(n-3) - 3*a(n-4) for n > 3, with a(0)=1, a(1)=2, a(2)=4, a(3)=8.

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 80, 178, 409, 942, 2212, 5204, 12377, 29472, 70592, 169198, 406801, 978426, 2357092, 5679488, 13696385, 33032892, 79703120, 192321034, 464168041, 1120302822, 2704242244, 6527724428, 15758096777, 38040729336, 91834772480
Offset: 0

Views

Author

Paul Curtz, Mar 11 2008

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1-4*x^2-2*x^3)/(1-2*x-4*x^2+6*x^3+3*x^4) )); // G. C. Greubel, Apr 11 2021
    
  • Maple
    a:=proc(n) options operator, arrow: expand((3/8)*3^((1/2)*n)*(1+(-1)^n)+(5/24)*3^((1/2)*n+1/2)*(1-(-1)^n)+(1/8)*(1+sqrt(2))^(n+1)+(1/8)*(1-sqrt(2))^(n+1)) end proc: seq(a(n),n=0..30); # Emeric Deutsch, Mar 31 2008
  • Mathematica
    LinearRecurrence[{2,4,-6,-3},{1,2,4,8},40] (* or *) CoefficientList[ Series[ (1-4 x^2-2 x^3)/(1-2 x-4 x^2+6 x^3+3 x^4),{x,0,40}],x] (* Harvey P. Dale, May 03 2018 *)
  • Sage
    def A137255_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-4*x^2-2*x^3)/(1-2*x-4*x^2+6*x^3+3*x^4) ).list()
    A137255_list(40) # G. C. Greubel, Apr 11 2021

Formula

a(n) = (3/8)*3^(n/2)*(1 + (-1)^n) + (5/24)*3^((n+1)/2)*(1 - (-1)^n) + (1/8)*(1+sqrt(2))^(n+1) + (1/8)*(1-sqrt(2))^(n+1). - Emeric Deutsch, Mar 31 2008
G.f.: (1 - 4*x^2 - 2*x^3)/(( 1 -3*x^2) *(1 -2*x -x^2)). - Harvey P. Dale, May 03 2018
4*a(n) = A078057(n) + A083658(n+2). - R. J. Mathar, Oct 03 2021

Extensions

More terms from Emeric Deutsch, Mar 31 2008