cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137256 Binomial transform of 2^n, 2^n, 2^n.

Original entry on oeis.org

1, 2, 4, 9, 21, 48, 108, 243, 549, 1242, 2808, 6345, 14337, 32400, 73224, 165483, 373977, 845154, 1909980, 4316409, 9754749, 22044960, 49819860, 112588947, 254442141, 575019162, 1299497904, 2936762649, 6636851721, 14998760928
Offset: 0

Views

Author

Paul Curtz, Mar 11 2008

Keywords

Comments

Sequence is identical to half its third differences.

References

  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.

Crossrefs

Programs

  • Magma
    I:=[1,2,4]; [n le 3 select I[n] else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..30]]; // G. C. Greubel, Apr 10 2021
    
  • Maple
    m:=30; S:=series( (1-x+x^2)/(1-3*x+3*x^2-3*x^3), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 10 2021
  • Mathematica
    LinearRecurrence[{3, -3, 3},{1, 2, 4},30] (* Ray Chandler, Sep 23 2015 *)
  • Sage
    def A137256_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+x^2)/(1-3*x+3*x^2-3*x^3) ).list()
    A137256_list(30) # G. C. Greubel, Apr 10 2021

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3).
O.g.f.: (1 -x +x^2)/(1 -3*x +3*x^2 -3*x^3). - R. J. Mathar, Apr 02 2008

Extensions

More terms from R. J. Mathar, Apr 02 2008