A137267 Chung-Graham juggling polynomials as a triangular sequence of positive coefficients.
1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 4, 4, 6, 12, 24, 5, 5, 8, 18, 48, 120, 6, 6, 10, 24, 72, 240, 720, 7, 7, 12, 30, 96, 360, 1440, 5040, 8, 8, 14, 36, 120, 480, 2160, 10080, 40320, 9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880
Offset: 1
Examples
Triangle begins with: 1; 1, 1; 2, 2, 2; 3, 3, 4, 6; 4, 4, 6, 12, 24; 5, 5, 8, 18, 48, 120; 6, 6, 10, 24, 72, 240, 720; 7, 7, 12, 30, 96, 360, 1440, 5040; 8, 8, 14, 36, 120, 480, 2160, 10080, 40320; 9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880;
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
- Fan Chung, R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194
Crossrefs
Cf. A137948.
Programs
-
Mathematica
p[x_, n_]:= If[n == 1, 1, -(1 - Sum[(n-k)*k!*x^k, {k, 0, n-1}])]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]//Flatten
Formula
Given f_b(x) = (1 - Sum_{k=0..n-1} (n-k)*k!*x^k)/(1-(b+1)*x), then
p(x,b) = -f_b(x)*(1-(b+1)*x) = -(1 - Sum_{k=0..n-1} (n-k)*k!*x^k ).
Comments