A137270 Primes p such that p^2 - 6 is also prime.
3, 5, 7, 13, 17, 23, 47, 53, 67, 73, 83, 97, 107, 113, 167, 193, 197, 263, 293, 317, 367, 373, 383, 457, 463, 467, 487, 503, 557, 593, 607, 643, 647, 673, 677, 683, 773, 787, 797, 823, 827, 857, 877, 887, 947, 1033, 1063, 1087, 1103, 1187, 1193, 1223, 1303
Offset: 1
Examples
The (2 x 7 - 2) -1 = 11 primes given by the polynomial x^2 + x - 7^2 for x = 1, 2, ..., 2 x 7 - 2 are -47, -43, -37, -29, -19, -7, 7, 23, 41, 61, 83, 107.
References
- F. G. Frobenius, Uber quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. d. Konigl. Acad. d. Wiss. zu Berlin, 1912, 966 - 980.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1350) | IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 14 2013
-
Maple
isA028879 := proc(n) isprime(n^2-6) ; end: isA137270 := proc(n) isprime(n) and isA028879(n) ; end: for i from 1 to 300 do if isA137270(ithprime(i)) then printf("%d, ",ithprime(i)) ; fi ; od: # R. J. Mathar, Mar 16 2008
-
Mathematica
Select[Prime[Range[2,300]],PrimeQ[#^2-6]&] (* Harvey P. Dale, Jul 24 2012 *)
Formula
Extensions
Corrected and extended by R. J. Mathar, Mar 16 2008
Comments