cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137270 Primes p such that p^2 - 6 is also prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 23, 47, 53, 67, 73, 83, 97, 107, 113, 167, 193, 197, 263, 293, 317, 367, 373, 383, 457, 463, 467, 487, 503, 557, 593, 607, 643, 647, 673, 677, 683, 773, 787, 797, 823, 827, 857, 877, 887, 947, 1033, 1063, 1087, 1103, 1187, 1193, 1223, 1303
Offset: 1

Views

Author

Ben de la Rosa and Johan Meyer (meyerjh.sci(AT)ufa.ac.za), Mar 13 2008

Keywords

Comments

Each of the primes p = 2,3,5,7,13 has the property that the quadratic polynomial phi(x) = x^2 + x - p^2 takes on only prime values for x = 1,2,...,2p-2; each case giving exactly one repetition, in phi(p-1) = -p and phi(p) = p.
The only common term in A062718 and A137270 is 5. - Zak Seidov, Jun 16 2015

Examples

			The (2 x 7 - 2) -1 = 11 primes given by the polynomial x^2 + x - 7^2 for x = 1, 2, ..., 2 x 7 - 2 are -47, -43, -37, -29, -19, -7, 7, 23, 41, 61, 83, 107.
		

References

  • F. G. Frobenius, Uber quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. d. Konigl. Acad. d. Wiss. zu Berlin, 1912, 966 - 980.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1350) | IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 14 2013
  • Maple
    isA028879 := proc(n) isprime(n^2-6) ; end: isA137270 := proc(n) isprime(n) and isA028879(n) ; end: for i from 1 to 300 do if isA137270(ithprime(i)) then printf("%d, ",ithprime(i)) ; fi ; od: # R. J. Mathar, Mar 16 2008
  • Mathematica
    Select[Prime[Range[2,300]],PrimeQ[#^2-6]&] (* Harvey P. Dale, Jul 24 2012 *)

Formula

A000040 INTERSECT A028879. - R. J. Mathar, Mar 16 2008

Extensions

Corrected and extended by R. J. Mathar, Mar 16 2008