A137286 Triangle of coefficients of a version of the Hermite polynomials defined by P(x, n) = x*P(x, n - 1) - n*P(x, n - 2).
1, 0, 1, -2, 0, 1, 0, -5, 0, 1, 8, 0, -9, 0, 1, 0, 33, 0, -14, 0, 1, -48, 0, 87, 0, -20, 0, 1, 0, -279, 0, 185, 0, -27, 0, 1, 384, 0, -975, 0, 345, 0, -35, 0, 1, 0, 2895, 0, -2640, 0, 588, 0, -44, 0, 1, -3840, 0, 12645, 0, -6090, 0, 938, 0, -54, 0, 1
Offset: 0
Examples
{1}, {0, 1}, {-2, 0, 1}, {0, -5, 0, 1}, {8, 0, -9, 0, 1}, {0, 33, 0, -14, 0, 1}, {-48, 0, 87, 0, -20, 0, 1}, {0, -279, 0, 185, 0, -27, 0, 1}, {384, 0, -975, 0, 345, 0, -35, 0, 1}, {0, 2895, 0, -2640, 0, 588, 0, -44, 0, 1}, {-3840, 0, 12645, 0, -6090, 0, 938, 0, -54, 0, 1}
References
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 198, pp. 8, 42-43.
Links
- R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239 (See p. 333 and A066325/A099174. From Tom Copeland, Jan 03 2016)
Programs
-
Mathematica
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a]
-
PARI
polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2))); tabl(nn) = {for (n = 0, nn, pol = polx (n); for (i = 0, n, print1(polcoeff(pol, i), ", ");); print(););} \\ Michel Marcus, Feb 12 2014
-
Python
from sympy import Poly from sympy.abc import x def P(x, n): return 1 if n==0 else x if n==1 else x*P(x, n - 1) - n*P(x, n - 2) def a(n): return Poly(P(x, n), x).all_coeffs()[::-1] for n in range(11): print(a(n)) # Indranil Ghosh, May 26 2017
Formula
P(x,0)=1; P(x,1)=x; P(x, n) = x*P(x, n - 1) - n*P(x, n - 2)
Extensions
Edited by N. J. A. Sloane, Jul 01 2008
Comments