cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A180048 Coefficient triangle of the denominators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . Conjectured to equal unsigned version of A137286.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 8, 0, 9, 0, 1, 0, 33, 0, 14, 0, 1, 48, 0, 87, 0, 20, 0, 1, 0, 279, 0, 185, 0, 27, 0, 1, 384, 0, 975, 0, 345, 0, 35, 0, 1, 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1, 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1, 0, 35685, 0, 41685, 0, 12558, 0, 1422, 0, 65
Offset: 0

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!).
From Alexander Kreinin, Oct 26 2015: (Start)
Let us denote the continued fraction by U(w).
Then it is easy to show that Mill's ratio, R(w) = (1 - Phi(w))/f(w), where Phi is the standard normal distribution function and f is the standard normal density function, satisfies R(w) = 1/(w + U(w)).
Indeed, R(w) = 1/(w+1/(w+2/(w+3/(w+... Then we find U(w) = 1/R(w) - w. It was proved in Alexander Kreinin (arXiv:1405.5852) that R(w+t) + Q(w, t) = exp(w*t + w^2/2)*R(t), where Q(w,t) = Sum_{k>=0} Sum_{m=0..k} q(k,m) * t^m * w^(k+1)/(k+1)!.
Substituting t=0, we obtain R(w) = exp(w^2/2)*sqrt(Pi/2) - Sum_{n>=0} w^(2n+1)/(2n+1)!!. If w=1 we obtain Ramanujan's formula. (End)

Examples

			The denominator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 48 + 87w^2 + 20w^4 + w^6.
From _Joerg Arndt_, Apr 20 2013: (Start)
Triangle begins
     1;
     0,     1;
     2,     0,     1;
     0,     5,     0,     1;
     8,     0,     9,     0,    1;
     0,    33,     0,    14,    0,   1;
    48,     0,    87,     0,   20,   0,   1;
     0,   279,     0,   185,    0,  27,   0,  1;
   384,     0,   975,     0,  345,   0,  35,  0,  1;
     0,  2895,     0,  2640,    0, 588,   0, 44,  0, 1;
  3840,     0, 12645,     0, 6090,   0, 938,  0, 54, 0, 1;
     0, 35685,     0, 41685,    0, ... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ Denominator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 16} ] (* or equivalently *) Clear[ p ];p[ 0 ]=1; p[ 1 ]=w; p[ n_ ]:=p[ n ]= w*p[ n-1 ] + n*p[ n-2 ]; Table[ CoefficientList[ p[ k ]//Expand, w ], {k,0,15} ]

Formula

p(0)=1; p(1)=w; p(n) = w*p(n-1) + n*p(n-2) (conjecture).
T(n,k) = T(n-1,k-1) + n*T(n-2,k), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1. - Philippe Deléham, Oct 28 2013
sum_{k=0..n} T(n,k) = A000932(n). - Philippe Deléham, Oct 28 2013
T(2n,0) = A000165(n); T(2n+1,1) = A129890(n); T(2n+2,2) = A035101(n+2). - Philippe Deléham, Oct 28 2013

A136239 Forced end points ( -Infinity ->-1) integration of A137286: Triangle of coefficients of Integrated recursive orthogonal Hermite polynomials given in Hochstadt's book : P(x, n) = x*P(x, n - 1) - n*P(x, n - 2).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -3, 0, 1, 9, 0, -6, 0, 1, -1, 27, 0, -10, 0, 1, -19, 0, 65, 0, -15, 0, 1, -1, -165, 0, 135, 0, -21, 0, 1, 399, 0, -624, 0, 252, 0, -28, 0, 1, -1, 2145, 0, -1750, 0, 434, 0, -36, 0, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 16 2008

Keywords

Comments

Because of error functions in the result where constants should be this is a difficult calculation.
Probably the wrong approach, but it is my best effort at getting Gaussian normal type functions to give integers. There has got to be a better way than this: maybe a conformal transform of the known Chebyshev Integration polynomials?
No recurrence formula was found for these polynomials, so they are probably wrong.
Row sums are:
{1, 1, 0, -3, 4, 17, 32, -51, 0, 793}

Examples

			{1},
{0, 1},
{-1, 0, 1},
{-1, -3, 0, 1},
{9, 0, -6, 0, 1},
{-1, 27, 0, -10, 0, 1},
{-19, 0, 65, 0, -15, 0, 1},
{-1, -165, 0, 135, 0, -21, 0,1},
{399, 0, -624, 0, 252, 0, -28, 0, 1},
{-1, 2145, 0, -1750, 0, 434, 0, -36, 0, 1}
		

References

  • page 8 and pages 42 - 43 : Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986

Crossrefs

Cf. A137286.

Formula

P(x, n) = x*P(x, n - 1) - n*P(x, n - 2); L(x,n)=Integrate[Exp[y^2/4]*p(y,n-1),{y,-Infinity,x}]/(-2*Exp[ -x^2/4]) Here the weight function is taken as the square root of the Hermite weight function Exp[ -x^2/2] and then divided out of the end result.

A136209 Differentiation of A137286: Triangle of coefficients of differentiation recursive orthogonal Hermite polynomials given in Hochstadt's book : P(x, n) = x*P(x, n - 1) - n*P(x, n - 2).

Original entry on oeis.org

1, 0, 2, -5, 0, 3, 0, -18, 0, 4, 33, 0, -42, 0, 5, 0, 174, 0, -80, 0, 6, -279, 0, 555, 0, -135, 0, 7, 0, -1950, 0, 1380, 0, -210, 0, 8, 2895, 0, -7920, 0, 2940, 0, -308, 0, 9, 0, 25290, 0, -24360, 0, 5628, 0, -432, 0, 10, -35685, 0, 125055, 0, -62790, 0, 9954, 0, -585, 0, 11
Offset: 1

Views

Author

Roger L. Bagula, Mar 16 2008

Keywords

Comments

Row sums are:
{1, 2, -2, -14, -4, 100, 148, -772, -2384, 6136, 35960}

Examples

			{1},
{0, 2},
{-5, 0, 3},
{0, -18, 0, 4},
{33, 0, -42, 0,5},
{0, 174, 0, -80, 0, 6},
{-279, 0, 555, 0, -135, 0, 7},
{0, -1950, 0, 1380, 0, -210, 0, 8},
{2895, 0, -7920, 0, 2940, 0, -308, 0, 9},
{0, 25290,0, -24360, 0, 5628, 0, -432, 0, 10},
{-35685, 0, 125055, 0, -62790, 0,9954, 0, -585, 0, 11}
		

References

  • page 8 and pages 42 - 43 : Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986

Crossrefs

Cf. A137286.

Programs

  • Mathematica
    H[x, 0] = 1; H[x, 1] = x; H[x_, n_] := H[x, n] = x*H[x, n - 1] - n*H[x, n - 2]; L[x_, n_] := D[H[x, n + 1], x]; a0 = Table[ExpandAll[L[x, n]], {n, 0, 10}]; a = Table[CoefficientList[L[x, n], x], {n, 0, 10}]; Flatten[a]

Formula

P(x, n) = x*P(x, n - 1) - n*P(x, n - 2); L(x,n)=dP(x,n+1]/dx

A136262 Integral form of A137286: Triangle of coefficients of Integral form of recursive orthogonal Hermite polynomials given in Hochstadt's book: n*IP(x, n) = x*P(x, n ) - n*P'(x, n - 2); derived to a constant from the differential recursion: P''(x,n)=x*P'(x,n)-n*P(x,n).

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 5, -2, -3, 1, 0, 18, -5, -4, 1, -33, 8, 42, -9, -5, 1, 0, -174, 33, 80, -14, -6, 1, 279, -48, -555, 87, 135, -20, -7, 1, 0, 1950, -279, -1380, 185, 210, -27, -8, 1, -2895, 384, 7920, -975, -2940, 345, 308, -35, -9, 1, 0, -25290, 2895, 24360, -2640, -5628, 588, 432, -44, -10, 1, 35685, -3840, -125055
Offset: 1

Views

Author

Roger L. Bagula, Mar 18 2008

Keywords

Comments

Row sums:
{1,0, -1, 1, 10, 4, -80, -128, 652, 2104, -5336, -32360}

Examples

			{1},
{-1, 1},
{0, -2, 1},
{5, -2, -3, 1},
{0, 18, -5, -4, 1},
{-33, 8, 42, -9, -5, 1},
{0, -174, 33,80, -14, -6, 1},
{279, -48, -555, 87, 135, -20, -7, 1},
{0, 1950, -279, -1380, 185, 210, -27, -8, 1},
{-2895,384, 7920, -975, -2940, 345, 308, -35, -9, 1},
{0, -25290, 2895, 24360, -2640, -5628, 588, 432, -44, -10, 1},
{35685, -3840, -125055,12645, 62790, -6090, -9954, 938, 585, -54, -11, 1}
		

References

  • Defined :page 8 and pages 42 - 43 and page 49: Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986

Crossrefs

Cf. A137286.

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; DP[x_, n_] := D[P[x, n + 1], x]; Table[ExpandAll[x*P[x, n] - DP[x, n]], {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[x*P[x, n] - DP[x, n], x], {n, 0, 10}]]; Flatten[a]

Formula

The Hermite Integral form is: IH[x,n]=(x*H[x,n]-H'[x,n])/n Which can be done as an integer form: n*IH[x,n]

A136586 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,n-2).

Original entry on oeis.org

0, 0, 1, -1, 0, 1, 0, -4, 0, 1, 6, 0, -8, 0, 1, 0, 28, 0, -13, 0, 1, -40, 0, 78, 0, -19, 0, 1, 0, -246, 0, 171, 0, -26, 0, 1, 336, 0, -888, 0, 325, 0, -34, 0, 1, 0, 2616, 0, -2455, 0, 561, 0, -43, 0, 1, -3456, 0, 11670, 0, -5745, 0, 903, 0, -53, 0, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 30 2008

Keywords

Comments

Row sums are:
{0, 1, 0, -3, -1, 16, 20, -100, -260, 680, 3320}
The double function Integration is alternating:
Table[Integrate[Exp[ -x^2/2]*P2[x, n]*P2[x, m], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0, 10}];
Four Initial conditions were necessary for starting this recursion:
P[x, 0] = 1; P[x, 1] = x; P[x, -1] = 0; P[x, -2] = -1;

Examples

			{0},
{0, 1},
{-1, 0, 1},
{0, -4, 0, 1},
{6, 0, -8, 0, 1},
{0, 28, 0, -13, 0, 1},
{-40, 0, 78, 0, -19, 0, 1},
{0, -246, 0, 171, 0, -26, 0,1},
{336, 0, -888, 0, 325, 0, -34, 0, 1},
{0, 2616, 0, -2455, 0, 561, 0, -43, 0, 1},
{-3456, 0, 11670, 0, -5745, 0, 903, 0, -53, 0, 1}
		

Crossrefs

Cf. A137286.

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x, -1] = 0; P[x, -2] = -1; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, n - 2]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]

Formula

H2(x,n)=A137286(x,n)+A137286(x,n-2)

A136587 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,2*n): second type.

Original entry on oeis.org

2, -2, 1, 1, 6, 0, -8, 0, 1, -48, -5, 87, 1, -20, 0, 1, 392, 0, -984, 0, 346, 0, -35, 0, 1, -3840, 33, 12645, -14, -6090, 1, 938, 0, -54, 0, 1, 46032, 0, -187338, 0, 114745, 0, -23813, 0, 2070, 0, -77, 0, 1, -645120, -279, 3133935, 185, -2336040, -27, 611415, 1, -71280, 0, 3993, 0, -104, 0, 1, 10322304, 0, -58438830, 0
Offset: 1

Views

Author

Roger L. Bagula, Mar 30 2008

Keywords

Comments

Row sums are:
{2, 0, -1, 16, -280, 3620, -48380, 696680, -10740280, 175631200, -3000871600}
The double function Integration is not orthogonal:
Table[Integrate[Exp[ -x^2/2]*P2[x, n]*P2[x, m], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0, 10}];
Both types have the polynomial:
p[x]=6 - 8 x^2 + x^4
Original Hermite has:
p[x]=8 - 9 x^2 + x^4
Integration of these as:
f[y_] = Integrate[Exp[ -x^2/4]*p[x], {x, Infinity, y}]
g[z_] = Integrate[Exp[ -y^2/4]*f[y], {y, Infinity, z}]
gives three level or four level curves with negative limit of 2*Pi.

Examples

			{2},
{-2, 1, 1},
{6, 0, -8, 0, 1},
{-48, -5, 87,1, -20, 0, 1},
{392, 0, -984, 0, 346, 0, -35, 0, 1},
{-3840, 33, 12645, -14, -6090, 1, 938, 0, -54, 0, 1},
{46032, 0, -187338, 0,114745, 0, -23813, 0, 2070, 0, -77, 0, 1},
{-645120, -279, 3133935, 185, -2336040, -27, 611415, 1, -71280, 0,3993, 0, -104,0, 1},
{10322304, 0, -58438830, 0, 51450870, 0, -16289000, 0, 2386396, 0, -178893, 0, 7007, 0, -135, 0, 1},
{-185794560, 2895, 1203216525, -2640, -1223803350,
588, 455259420, -44, -80424630, 1, 7561554, 0, -395850, 0, 11460, 0, -170,
0, 1},
{3715887360, 0, -27125479980, 0, 31335461535, 0, -13408093762, 0, 2775672846, 0,-314143829, 0, 20603310, 0, -796620, 0, 17748, 0, -209, 0, 1}
		

Crossrefs

Cf. A137286.

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, 2*n]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]

Formula

H2(x,n)=A137286(x,n)+A137286(x,2*n)

A136664 Triangular vector sequence as weighted conversion between A137286 and A049310.

Original entry on oeis.org

1, 0, 2, 8, 0, 4, 0, 20, 0, 8, 128, 0, 48, 0, 16, 0, 352, 0, 112, 0, 32, 3072, 0, 928, 0, 256, 0, 64, 0, 8928, 0, 2368, 0, 576, 0, 128, 98304, 0, 24960, 0, 5888, 0, 1280, 0, 256, 0, 296448, 0, 67584, 0, 14336, 0, 2816, 0, 512, 3932160, 0, 863232, 0, 178176, 0, 34304
Offset: 1

Views

Author

Roger L. Bagula, Apr 01 2008

Keywords

Comments

Row sums:
{1, 2, 12, 28, 192, 496, 4320, 12000, 130688, 381696, 5015040};
Suppose that you have a Chebyshev-like recursion: (one type) P[x,n]=x*P[x,n-1]-P[x,n-2]
and an Hermite: Q[x,n]=x*Q[x,n-1]-n*Q[x,n-2]
You can define a set of Matrices on the Coefficient list vectors:
vp[n]=M[n].vq[n]
vq[n].vq[n]t=delta[i,j]
vp[n].vq[n]t=M[n]
where M[n] is a diagonal matrix (a vector)
Then a new set of polynomials is obtained.

Examples

			{1},
{0, 2},
{8, 0, 4},
{0, 20, 0, 8},
{128, 0, 48, 0, 16},
{0, 352, 0, 112, 0, 32},
{3072, 0, 928, 0, 256, 0, 64},
{0, 8928, 0, 2368, 0, 576, 0, 128},
{98304, 0, 24960, 0, 5888, 0, 1280, 0, 256},
{0, 296448, 0, 67584, 0, 14336, 0, 2816, 0, 512},
{3932160, 0, 863232, 0, 178176, 0, 34304, 0, 6144, 0, 1024}
		

Crossrefs

Programs

  • Mathematica
    Clear[P, x, n, a] (*Hermite : A137286*) P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; a1 = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; (* Chebyshev : other kind : A049310*) Clear[B, x, n] B[x, 0] = 1; B[x, 1] = x; B[x_, n_] := B[x, n] = x*B[x, n - 1] - B[x, n - 2]; a = Table[CoefficientList[B[x, n], x], {n, 0, 10}]; (* converter?*) b = Table[Table[If[a[[n]][[ i]] == 0, 0, 2^(n - 1)*a1[[n]][[i]]/a[[n]][[i]]], {i, 1, Length[a[[n]]]}], {n, 1, Length[a]}]; Flatten[b]

Formula

T(n,m)=If[A137286(m)>0,A049310(n)/A137286(m),0] Out_vector=2^(n-1)*T(n,m)

A136667 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Hermite polynomial of the Hochstadt kind (A137286) as related to the generalized Chebyshev in a Shabat way (A123583): p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.

Original entry on oeis.org

0, 1, 0, -1, -3, 0, 4, 0, -1, 1, 0, -25, 0, 10, 0, -1, -63, 0, 144, 0, -97, 0, 18, 0, -1, 1, 0, -1089, 0, 924, 0, -262, 0, 28, 0, -1, -2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1, 1, 0, -77841, 0, 103230, 0, -49291, 0, 10548, 0, -1099, 0, 54, 0, -1, -147455, 0, 748800, 0, -1215585, 0, 699630, 0, -188043, 0
Offset: 1

Views

Author

Roger L. Bagula, Apr 02 2008

Keywords

Comments

Row sums are {0, 0, 0, -15, 1, -399, -399, -14399, -78399, -639999, -12959999}.

Examples

			The irregular triangle begins
  {0},
  {1, 0, -1},
  {-3, 0, 4, 0, -1},
  {1, 0, -25, 0, 10, 0, -1},
  {-63, 0, 144, 0, -97, 0, 18, 0, -1},
  {1, 0, -1089, 0, 924, 0, -262,0, 28, 0, -1},
  {-2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1},
  {1, 0, -77841, 0, 103230, 0, -49291, 0, 10548,0, -1099, 0, 54, 0, -1},
  ...
		

References

  • Defined: page 8 and pages 42 - 43: Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986
  • G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, pp. 199-22

Crossrefs

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Q[x_, n_] := Q[x, n] = 1 - P[x, n]^2; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Join[{{0}}, Table[CoefficientList[Q[x, n], x], {n, 0, 10}]]; Flatten[a]
  • PARI
    polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2)));
    tabf(nn) = {for (n = 0, nn, pol = 1 - polx(n)^2; for (i = 0, 2*n, print1(polcoeff(pol, i), ", "); ); print(); ); }  \\ Michel Marcus, Feb 26 2018

Formula

out=1-A137286(x,n)^2; p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.

Extensions

Keyword changed to tabf by Michel Marcus, Feb 26 2018

A099174 Triangle read by rows: coefficients of modified Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 15, 0, 10, 0, 1, 15, 0, 45, 0, 15, 0, 1, 0, 105, 0, 105, 0, 21, 0, 1, 105, 0, 420, 0, 210, 0, 28, 0, 1, 0, 945, 0, 1260, 0, 378, 0, 36, 0, 1, 945, 0, 4725, 0, 3150, 0, 630, 0, 45, 0, 1, 0, 10395, 0, 17325, 0, 6930, 0, 990, 0, 55, 0, 1
Offset: 0

Views

Author

Ralf Stephan, on a suggestion of Karol A. Penson, Oct 13 2004

Keywords

Comments

Absolute values of A066325.
T(n,k) is the number of involutions of {1,2,...,n}, having k fixed points (0 <= k <= n). Example: T(4,2)=6 because we have 1243,1432,1324,4231,3214 and 2134. - Emeric Deutsch, Oct 14 2006
Riordan array [exp(x^2/2),x]. - Paul Barry, Nov 06 2008
Same as triangle of Bessel numbers of second kind, B(n,k) (see Cheon et al., 2013). - N. J. A. Sloane, Sep 03 2013
The modified Hermite polynomial h(n,x) (as in the Formula section) is the numerator of the rational function given by f(n,x) = x + (n-2)/f(n-1,x), where f(x,0) = 1. - Clark Kimberling, Oct 20 2014
Second lower diagonal T(n,n-2) equals positive triangular numbers A000217 \ {0}. - M. F. Hasler, Oct 23 2014
From James East, Aug 17 2015: (Start)
T(n,k) is the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the Brauer monoid of degree n.
For n < k with n == k (mod 2), T(n,k) is the rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of the ideal consisting of all rank <= k elements of the Brauer monoid. (End)
This array provides the coefficients of a Laplace-dual sequence H(n,x) of the Dirac delta function, delta(x), and its derivatives, formed by taking the inverse Laplace transform of these modified Hermite polynomials. H(n,x) = h(n,D) delta(x) with h(n,x) as in the examples and the lowering and raising operators L = -x and R = -x + D = -x + d/dx such that L H(n,x) = n * H(n-1,x) and R H(n,x) = H(n+1,x). The e.g.f. is exp[t H(.,x)] = e^(t^2/2) e^(t D) delta(x) = e^(t^2/2) delta(x+t). - Tom Copeland, Oct 02 2016
Antidiagonals of this entry are rows of A001497. - Tom Copeland, Oct 04 2016
This triangle is the reverse of that in Table 2 on p. 7 of the Artioli et al. paper and Table 6.2 on p. 234 of Licciardi's thesis, with associations to the telephone numbers. - Tom Copeland, Jun 18 2018 and Jul 08 2018
See A344678 for connections to a Heisenberg-Weyl algebra of differential operators, matching and independent edge sets of the regular n-simplices with partially labeled vertices, and telephone switchboard scenarios. - Tom Copeland, Jun 02 2021

Examples

			h(0,x) = 1
h(1,x) = x
h(2,x) = x^2 + 1
h(3,x) = x^3 + 3*x
h(4,x) = x^4 + 6*x^2 + 3
h(5,x) = x^5 + 10*x^3 + 15*x
h(6,x) = x^6 + 15*x^4 + 45*x^2 + 15
From _Paul Barry_, Nov 06 2008: (Start)
Triangle begins
   1,
   0,  1,
   1,  0,  1,
   0,  3,  0,  1,
   3,  0,  6,  0,  1,
   0, 15,  0, 10,  0,  1,
  15,  0, 45,  0, 15,  0,  1
Production array starts
  0, 1,
  1, 0, 1,
  0, 2, 0, 1,
  0, 0, 3, 0, 1,
  0, 0, 0, 4, 0, 1,
  0, 0, 0, 0, 5, 0, 1 (End)
		

Crossrefs

Row sums (polynomial values at x=1) are A000085.
Polynomial values: A005425 (x=2), A202834 (x=3), A202879(x=4).
Cf. A137286.
Cf. A001497.

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then n!/2^((n-k)/2)/((n-k)/2)!/k! else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 14 2006
  • Mathematica
    nn=10;a=y x+x^2/2!;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, May 08 2012 *)
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x]-(n-1)* H[n-2, x]; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten // Abs (* Jean-François Alcover, May 23 2016 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[HermiteH[n, x I/Sqrt[2]] (Sqrt[1/2]/I)^n, x, k]]; (* Michael Somos, May 10 2019 *)
  • PARI
    T(n,k)=if(k<=n && k==Mod(n,2), n!/k!/(k=(n-k)/2)!>>k) \\ M. F. Hasler, Oct 23 2014
    
  • Python
    import sympy
    from sympy import Poly
    from sympy.abc import x, y
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return [abs(cf) for cf in Poly(H(n, x), x).all_coeffs()[::-1]]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 1
        for k in range(n - 2, -1, -2):
            row[k] = (row[k + 2] * (k + 2) * (k + 1)) // (n - k)
        return row  # Peter Luschny, Jan 08 2023
  • Sage
    def A099174_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*M[n-1,k+1]
        return M
    A099174_triangle(9)  # Peter Luschny, Oct 06 2012
    

Formula

h(k, x) = (-I/sqrt(2))^k * H(k, I*x/sqrt(2)), H(n, x) the Hermite polynomials (A060821, A059343).
T(n,k) = n!/(2^((n-k)/2)*((n-k)/2)!k!) if n-k >= 0 is even; 0 otherwise. - Emeric Deutsch, Oct 14 2006
G.f.: 1/(1-x*y-x^2/(1-x*y-2*x^2/(1-x*y-3*x^2/(1-x*y-4*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
E.g.f.: exp(y*x + x^2/2). - Geoffrey Critzer, May 08 2012
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n >= 1 T(n,k) = T(n-1,k-1) + (k+1)*T(n-1,k+1). - Peter Luschny, Oct 06 2012
T(n+2,n) = A000217(n+1), n >= 0. - M. F. Hasler, Oct 23 2014
The row polynomials P(n,x) = (a. + x)^n, umbrally evaluated with (a.)^n = a_n = aerated A001147, are an Appell sequence with dP(n,x)/dx = n * P(n-1,x). The umbral compositional inverses (cf. A001147) of these polynomials are given by the same polynomials signed, A066325. - Tom Copeland, Nov 15 2014
From Tom Copeland, Dec 13 2015: (Start)
The odd rows are (2x^2)^n x n! L(n,-1/(2x^2),1/2), and the even, (2x^2)^n n! L(n,-1/(2x^2),-1/2) in sequence with n= 0,1,2,... and L(n,x,a) = Sum_{k=0..n} binomial(n+a,k+a) (-x)^k/k!, the associated Laguerre polynomial of order a. The odd rows are related to A130757, and the even to A176230 and A176231. Other versions of this entry are A122848, A049403, A096713 and A104556, and reversed A100861, A144299, A111924. With each non-vanishing diagonal divided by its initial element A001147(n), this array becomes reversed, aerated A034839.
Create four shift and stretch matrices S1,S2,S3, and S4 with all elements zero except S1(2n,n) = 1 for n >= 1, S2(n,2n) = 1 for n >= 0, S3(2n+1,n) = 1 for n >= 1, and S4(n,2n+1) = 1 for n >= 0. Then this entry's lower triangular matrix is T = Id + S1 * (A176230-Id) * S2 + S3 * (unsigned A130757-Id) * S4 with Id the identity matrix. The sandwiched matrices have infinitesimal generators with the nonvanishing subdiagonals A000384(n>0) and A014105(n>0).
As an Appell sequence, the lowering and raising operators are L = D and R = x + dlog(exp(D^2/2))/dD = x + D, where D = d/dx, L h(n,x) = n h(n-1,x), and R h(n,x) = h(n+1,x), so R^n 1 = h(n,x). The fundamental moment sequence has the e.g.f. e^(t^2/2) with coefficients a(n) = aerated A001147, i.e., h(n,x) = (a. + x)^n, as noted above. The raising operator R as a matrix acting on o.g.f.s (formal power series) is the transpose of the production matrix P below, i.e., (1,x,x^2,...)(P^T)^n (1,0,0,...)^T = h(n,x).
For characterization as a Riordan array and associations to combinatorial structures, see the Barry link and the Yang and Qiao reference. For relations to projective modules, see the Sazdanovic link.
(End)
From the Appell formalism, e^(D^2/2) x^n = h_n(x), the n-th row polynomial listed below, and e^(-D^2/2) x^n = u_n(x), the n-th row polynomial of A066325. Then R = e^(D^2/2) * x * e^(-D^2/2) is another representation of the raising operator, implied by the umbral compositional inverse relation h_n(u.(x)) = x^n. - Tom Copeland, Oct 02 2016
h_n(x) = p_n(x-1), where p_n(x) are the polynomials of A111062, related to the telephone numbers A000085. - Tom Copeland, Jun 26 2018
From Tom Copeland, Jun 06 2021: (Start)
In the power basis x^n, the matrix infinitesimal generator M = A132440^2/2, when acting on a row vector for an o.g.f., is the matrix representation for the differential operator D^2/2.
e^{M} gives the coefficients of the Hermite polynomials of this entry.
The only nonvanishing subdiagonal of M, the second subdiagonal (1,3,6,10,...), gives, aside from the initial 0, the triangular numbers A000217, the number of edges of the n-dimensional simplices with (n+1) vertices. The perfect matchings of these simplices are the aerated odd double factorials A001147 noted above, the moments for the Hermite polynomials.
The polynomials are also generated from A036040 with x[1] = x, x[2] = 1, and the other indeterminates equal to zero. (End)

A136247 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial h(n,x) with h(0,x)=1, h(1,x)=1-x and recursively h(n,x) = 1 + n -(1-x)*(1-h(n-1,x)) - n*h(n-2,x).

Original entry on oeis.org

1, 1, -1, 1, -1, 1, 1, 2, 2, -1, 1, 6, -4, -3, 1, 1, -4, -20, 6, 4, -1, 1, -40, 8, 44, -8, -5, 1, 1, -12, 188, -6, -80, 10, 6, -1, 1, 308, 136, -546, -10, 130, -12, -7, 1, 1, 416, -1864, -628, 1256, 50, -196, 14, 8, -1, 1, -2664, -3640, 6696, 1984, -2506, -126, 280, -16, -9, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 17 2008

Keywords

Comments

Row sums are 1, 0, 1, 4, 1, -14, 1, 106, 1, -944, 1, 10396, 1, -135134, 1, 2027026, 1, -34459424, 1, 654729076, 1...
[Row sums s(n) appear to obey s(n) -2*s(n-1) +(n+1)*s(n-2) +2*(1-n)*s(n-3) +(n-2)* s(n-4)=0. - R. J. Mathar, Dec 04 2011]

Examples

			1;
1, -1;
1, -1, 1;
1, 2, 2, -1;
1, 6, -4, -3, 1;
1, -4, -20,6, 4, -1;
1, -40, 8, 44, -8, -5, 1;
1, -12, 188, -6, -80,10, 6, -1;
1, 308, 136, -546, -10, 130, -12, -7, 1;
1, 416, -1864, -628, 1256, 50, -196, 14, 8, -1;
1, -2664, -3640, 6696, 1984, -2506, -126,280, -16, -9, 1;
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, pp. 8, 42-43.

Crossrefs

Cf. A137286.

Programs

  • Maple
    h := proc(n,x)
        if n = 0 then
            1 ;
        elif n = 1 then
            1-x ;
        else
            1+n-(1-x)*(1-procname(n-1,x)) -n*procname(n-2,x) ;
            expand(%) ;
        end if;
    end proc:
    A136247 := proc(n,k)
        coeftayl(h(n,x),x=0,k) ;
    end proc:
    seq(seq(A136247(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 04 2011
  • Mathematica
    Clear[h, a, n, x, y, c, d] (*Solve linear Shabat transform for Hermite type recursion*) Solve[c*x0 + d - x*(c*x1 + d) + n*(c*x2 + d) == 0, x0] c = -1; d = 1; Solve[y = c*x + d == 0, x] h[x, 0] = 1; h[x, 1] = 1 - x; h[x_, n_] := h[x, n] = -(-1 - n + (1 - x) - (1 - x)* h[ x, n - 1] + n *h[x, n - 2]); Table[ExpandAll[h[x, n]], {n, 0, 10}]; a = Table[CoefficientList[h[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[h[x, n], x]], {n, 0, 10}];
Showing 1-10 of 13 results. Next