cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137402 a(n) = Sum_{k=0..n} binomial(floor(n-2k/3), k).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 16, 28, 48, 81, 136, 229, 388, 661, 1129, 1928, 3287, 5594, 9510, 16164, 27484, 46757, 79577, 135454, 230552, 392355, 667620, 1135924, 1932721, 3288563, 5595805, 9522067, 16203273, 27572144, 46917243, 79834375, 135845607, 231154212
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

Comments

A_n + B_{n-1} + C_{n-2} in the notation of A137356.
Lim_{n->infinity} a(n+1)/a(n) = x ~= 1.7016..., with x given by the real root (A324498) of (x - 1)^3*x^2 = 1. - Hugo Pfoertner, Mar 15 2019

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor(n-2*k/3), k): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Mar 15 2019
    
  • Maple
    f:=n->add( binomial( floor(n-2*k/3), k), k=0..n);
  • Mathematica
    Table[Sum[Binomial[Floor[n-(2k)/3],k],{k,0,n}],{n,0,40}] (* or *) LinearRecurrence[{3,-3,1,0,1},{1,1,2,3,5},40] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    Vec((1-2*x+2*x^2-x^3+x^4)/(1-3*x+3*x^2-x^3-x^5) + O(x^50)) \\ Colin Barker, Dec 14 2015
    
  • PARI
    a(n) = sum(k=0, n, binomial(floor(n-2*k/3), k)); \\ Altug Alkan, Dec 14 2015
    
  • Sage
    [sum(binomial(floor(n-2*k/3),k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, Mar 15 2019

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5); a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5. - Harvey P. Dale, Aug 22 2011
G.f.: (1 - 2*x + 2*x^2 - x^3 + x^4) / (1 - 3*x + 3*x^2 - x^3 - x^5). - Colin Barker, Dec 14 2015