A137410 a(n) = (5^n - 3)/2.
-1, 1, 11, 61, 311, 1561, 7811, 39061, 195311, 976561, 4882811, 24414061, 122070311, 610351561, 3051757811, 15258789061, 76293945311, 381469726561, 1907348632811, 9536743164061, 47683715820311, 238418579101561, 1192092895507811, 5960464477539061, 29802322387695311, 149011611938476561
Offset: 0
Examples
From _Philippe Deléham_, Feb 24 2014: (Start) a(1) = 1; a(2) = 5 + 1 + 5 = 11; a(3) = 25 + 5 + 1 + 5 + 25 = 61; a(4) = 125 + 25 + 5 + 1 + 5 + 25 + 125 = 311; etc. (End)
Links
- M. F. Hasler, Table of n, a(n) for n = 0..100
- Geoffrey B Campbell and Aleksander Zujev, On integer solutions to x^5 - (x+1)^5 -(x+2)^5 +(x+3)^5 = 5^m + 5^n, arXiv:1603.00080 [math.NT], 2016.
- Index entries for linear recurrences with constant coefficients, signature (6,-5).
Crossrefs
Programs
-
Magma
[(5^n-3)/2: n in [0..25]]; // Vincenzo Librandi, Mar 02 2016
-
Mathematica
LinearRecurrence[{6, -5}, {1, 11}, 25] (* Vincenzo Librandi, Mar 02 2016 *) (5^Range[30]-3)/2 (* Harvey P. Dale, Feb 24 2017 *)
-
PARI
a(n) = (5^n - 3) / 2; \\ Michel Marcus, Mar 02 2016
Formula
a(n) = (5^n - 3)/2.
From Colin Barker, May 01 2012: (Start)
a(n) = 6*a(n-1) - 5*a(n-2).
G.f.: (-1+7*x)/((1-x)*(1-5*x)). (End)
a(n) = 5*a(n-1) + 6, a(1) = 1. - Philippe Deléham, Feb 24 2014
From Elmo R. Oliveira, Dec 11 2023: (Start)
E.g.f.: (1/2)*(exp(5*x) - 3*exp(x)). (End)
Extensions
More terms from Michel Marcus, Mar 02 2016
Edited and missing term a(0) inserted by M. F. Hasler, Jul 10 2018
Comments