A137437 Triangular sequence from expansion coefficients of asymptotic Hermite Polynomial from Roman: p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)].
1, 0, 0, 0, -2, 0, 6, 0, -24, 0, 120, 40, 0, -720, -420, 0, 5040, 3948, 0, -40320, -38304, -2240, 0, 362880, 396576, 50400
Offset: 1
Examples
{1}, {0}, {0}, {0, -2}, {0, 6}, {0, -24}, {0, 120, 40}, {0, -720, -420}, {0, 5040, 3948}, {0, -40320, -38304, -2240}, {0, 362880, 396576, 50400}
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 130.
Programs
-
Mathematica
p[t_] := (1 + t)^(-x)*Exp[x*(t - t^2/2)]; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[{{1}, {0}, {0}, {0, -2}, {0, 6}, {0, -24}, {0, 120, 40}, {0, -720, -420}, {0, 5040, 3948}, {0, -40320, -38304, -2240}, {0, 362880, 396576, 50400}}]
Formula
p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)]=Sum[q(x,n)*t^n/n!,{n,0,Infinity}]; out(n,m)=n!*Coefficients(q(x,n)).
Comments