cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137441 Partial sums of partial sums of PrimePi(k).

Original entry on oeis.org

0, 1, 4, 9, 17, 28, 43, 62, 85, 112, 144, 181, 224, 273, 328, 389, 457, 532, 615, 706, 805, 912, 1028, 1153, 1287, 1430, 1582, 1743, 1914, 2095, 2287, 2490, 2704, 2929, 3165, 3412, 3671, 3942, 4225, 4520, 4828, 5149, 5484, 5833, 6196, 6573, 6965, 7372, 7794
Offset: 1

Views

Author

Jonathan Vos Post, Apr 17 2008

Keywords

Crossrefs

Programs

  • Maple
    A000720 := proc(n) option remember ; numtheory[pi](n) ; end: A046992 := proc(n) option remember ; add( A000720(i),i=1..n) ; end: A137441 := proc(n) add( A046992(i),i=1..n) ; end: seq(A137441(n),n=1..80) ; # R. J. Mathar, Apr 23 2008
    # second Maple program:
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[numtheory[pi](n+1), p[1]])(b(n-1)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=1..49);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    Accumulate[Accumulate[PrimePi[Range[50]]]] (* Harvey P. Dale, Feb 17 2013 *)

Formula

a(n) = partial sum of A046992 = partial sum of partial sum of PrimePi(k) = partial sum of partial sum of A000720(k) = Sum_{j=1..n} (Sum_{k=1..j} PrimePi(k)).
a(n) = Sum_{i=1..n} (n+1-i)*pi(i), where pi = A000720. - Ridouane Oudra, Aug 31 2019

Extensions

More terms from R. J. Mathar, Apr 23 2008