A137441 Partial sums of partial sums of PrimePi(k).
0, 1, 4, 9, 17, 28, 43, 62, 85, 112, 144, 181, 224, 273, 328, 389, 457, 532, 615, 706, 805, 912, 1028, 1153, 1287, 1430, 1582, 1743, 1914, 2095, 2287, 2490, 2704, 2929, 3165, 3412, 3671, 3942, 4225, 4520, 4828, 5149, 5484, 5833, 6196, 6573, 6965, 7372, 7794
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
Programs
-
Maple
A000720 := proc(n) option remember ; numtheory[pi](n) ; end: A046992 := proc(n) option remember ; add( A000720(i),i=1..n) ; end: A137441 := proc(n) add( A046992(i),i=1..n) ; end: seq(A137441(n),n=1..80) ; # R. J. Mathar, Apr 23 2008 # second Maple program: b:= proc(n) option remember; `if`(n<1, [0$2], (p-> p+[numtheory[pi](n+1), p[1]])(b(n-1))) end: a:= n-> b(n)[2]: seq(a(n), n=1..49); # Alois P. Heinz, Oct 07 2021
-
Mathematica
Accumulate[Accumulate[PrimePi[Range[50]]]] (* Harvey P. Dale, Feb 17 2013 *)
Formula
a(n) = partial sum of A046992 = partial sum of partial sum of PrimePi(k) = partial sum of partial sum of A000720(k) = Sum_{j=1..n} (Sum_{k=1..j} PrimePi(k)).
a(n) = Sum_{i=1..n} (n+1-i)*pi(i), where pi = A000720. - Ridouane Oudra, Aug 31 2019
Extensions
More terms from R. J. Mathar, Apr 23 2008