A137452 Triangular array of the coefficients of the sequence of Abel polynomials A(n,x) := x*(x-n)^(n-1).
1, 0, 1, 0, -2, 1, 0, 9, -6, 1, 0, -64, 48, -12, 1, 0, 625, -500, 150, -20, 1, 0, -7776, 6480, -2160, 360, -30, 1, 0, 117649, -100842, 36015, -6860, 735, -42, 1, 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1, 0, 43046721, -38263752, 14880348, -3306744, 459270, -40824, 2268, -72, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, -2, 1; 0, 9, -6, 1; 0, -64, 48, -12, 1; 0, 625, -500, 150, -20, 1; 0, -7776, 6480, -2160, 360, -30, 1; 0, 117649, -100842, 36015, -6860, 735, -42, 1; 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1;
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 14 and 29
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- W. Y. Chen, A general bijective algorithm for trees, PNAS December 1, 1990 vol. 87 no. 24 9635-9639.
- L. E. Clarke, On Cayley's formula for counting trees, J. London Math. Soc. 33 (1958), 471-475.
- Péter L. Erdős and L. A. Székely, Applications of Antilexicographic Order. I., An Enumerative Theory of Trees, Adv. in Appl. Math. 10, (1989) 488-496.
- Eric Weisstein's World of Mathematics, Abel Polynomial.
- Wikipedia, Abel Polynomials.
- Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020.
Crossrefs
Programs
-
Maple
T := proc(n,k) if n = 0 and k = 0 then 1 else binomial(n-1,k-1)*(-n)^(n-k) fi end; seq(print(seq(T(n,k),k=0..n)),n=0..7); # Peter Luschny, Jan 14 2009 # The function BellMatrix is defined in A264428. BellMatrix(n -> (-n-1)^n, 9); # Peter Luschny, Jan 27 2016
-
Mathematica
a0 = 1 a[x, 0] = 1; a[x, 1] = x; a[x_, n_] := x*(x - a0*n)^(n - 1); Table[Expand[a[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[a[x, n], x], {n, 0, 10}]; Flatten[a1] (* Second program: *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, (-n-1)^n], rows = 12]; Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
Sage
# uses[inverse_bell_transform from A264429] def A137452_matrix(dim): nat = [n for n in (1..dim)] return inverse_bell_transform(dim, nat) A137452_matrix(10) # Peter Luschny, Dec 20 2015
Formula
Row n gives the coefficients of the expansion of x*(x-n)^(n-1).
Abs(T(n,k)) = C(n-1,k-1)*n^(n-k). - Peter Luschny, Jan 14 2009
From Wolfdieter Lang, Nov 08 2022: (Start)
From the exponential Riordan (also Sheffer of Jabotinsky) type (1, LambertW) array (see comments).
E.g.f. of column sequence k, LambertW(x)^k/k!, for k >= 0.
E.g.f. of row polynomials P_n(y) = Sum_{k=0..n} T(n, k)*y^k: exp(y*LambertW(x)).
Recurrence for T: T(n, k) = 0 for n < k; T(n, 0) = 1 for n = 0 otherwise 0; T(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j,k-1)*(-1)^j*T(n-1, k-1+j). (Jabotinsky type convolution triangle, the e.g.f.s for the a- and z-sequences are exp(-x), and 0. See the link in A006232.)
Recurrence for column k of T: T(n, k) = 0 for n < k, T(k, k) = 1, for k >= 0 otherwise T(n, k) = (n!*k/(n-k))*Sum_{j=k..n-1} (1/j!)*beta(n-1-j)*T(j, k), where beta(n) = A264234(n+1)/A095996(n+1) = {-1, 2, -9/2, 32/3, -625/24, ...} with o.g.f. d/dx(log(LambertW(x)/x)). See the Boas-Buck or Rainville references given in A046521, and my Aug 10 2017 comment there.
Extensions
Better name by Peter Bala, Apr 08 2013
Edited by Joerg Arndt, Apr 08 2013
Comments