A137478 A triangle of recursive Fibonacci Lah numbers: f(n) = Fibonacci(n)*f(n - 1), L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
1, 1, 1, 2, 4, 1, 6, 18, 9, 1, 30, 120, 90, 20, 1, 240, 1200, 1200, 400, 40, 1, 3120, 18720, 23400, 10400, 1560, 78, 1, 65520, 458640, 687960, 382200, 76440, 5733, 147, 1, 2227680, 17821440, 31187520, 20791680, 5197920, 519792, 19992, 272, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 2, 4, 1; 6, 18, 9, 1; 30, 120, 90, 20, 1; 240, 1200, 1200, 400, 40, 1; 3120, 18720, 23400, 10400, 1560, 78, 1; 65520, 458640, 687960, 382200, 76440, 5733, 147, 1;
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page86
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
f:= func< n | (&*[Fibonacci(j): j in [1..n]]) >; [[Binomial(n-1,k-1)*(f(n)/f(k)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 15 2019
-
Mathematica
f[n_]:= Product[Fibonacci[j], {j, 1, n}]; Table[Binomial[n-1, k-1]* f[n]/f[k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, May 15 2019 *)
-
PARI
{f(n) = prod(j=1,n, fibonacci(j))}; {T(n,k) = binomial(n-1, k-1)*(f(n)/f(k))}; for(n=1, 12, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 15 2019
-
Sage
def f(n): return product(fibonacci(j) for j in (1..n)) [[binomial(n-1,k-1)*(f(n)/f(k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 15 2019
Formula
With f(n) = Fibonacci(n)*f(n-1) then the triangle is formed by L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
With f(n) = Product_{j=1..n} Fibonacci(j) then the triangle is formed by T(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). - G. C. Greubel, May 15 2019
Extensions
Edited by G. C. Greubel, May 15 2019
Comments