cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137478 A triangle of recursive Fibonacci Lah numbers: f(n) = Fibonacci(n)*f(n - 1), L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 18, 9, 1, 30, 120, 90, 20, 1, 240, 1200, 1200, 400, 40, 1, 3120, 18720, 23400, 10400, 1560, 78, 1, 65520, 458640, 687960, 382200, 76440, 5733, 147, 1, 2227680, 17821440, 31187520, 20791680, 5197920, 519792, 19992, 272, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 22 2008

Keywords

Comments

Row sums are: {1, 2, 7, 34, 261, 3081, 57279, 1676641, 77766297, 5728225636, 671925730146, ...}.

Examples

			Triangle begins as:
      1;
      1,      1;
      2,      4,      1;
      6,     18,      9,      1;
     30,    120,     90,     20,     1;
    240,   1200,   1200,    400,    40,    1;
   3120,  18720,  23400,  10400,  1560,   78,   1;
  65520, 458640, 687960, 382200, 76440, 5733, 147, 1;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page86

Crossrefs

Programs

  • Magma
    f:= func< n | (&*[Fibonacci(j): j in [1..n]]) >;
    [[Binomial(n-1,k-1)*(f(n)/f(k)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    f[n_]:= Product[Fibonacci[j], {j, 1, n}]; Table[Binomial[n-1, k-1]* f[n]/f[k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, May 15 2019 *)
  • PARI
    {f(n) = prod(j=1,n, fibonacci(j))};
    {T(n,k) = binomial(n-1, k-1)*(f(n)/f(k))};
    for(n=1, 12, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 15 2019
    
  • Sage
    def f(n): return product(fibonacci(j) for j in (1..n))
    [[binomial(n-1,k-1)*(f(n)/f(k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 15 2019

Formula

With f(n) = Fibonacci(n)*f(n-1) then the triangle is formed by L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
With f(n) = Product_{j=1..n} Fibonacci(j) then the triangle is formed by T(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). - G. C. Greubel, May 15 2019

Extensions

Edited by G. C. Greubel, May 15 2019