cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137500 Binomial transform of b(n) = (0, 0, A007910).

Original entry on oeis.org

0, 0, 1, 5, 17, 51, 149, 439, 1309, 3927, 11797, 35423, 106301, 318903, 956645, 2869807, 8609293, 25827879, 77483893, 232452191, 697357085, 2092071255, 6276212741, 18828636175, 56485906477, 169457719431, 508373162389, 1525119495359, 4575358494269, 13726075482807
Offset: 0

Views

Author

Paul Curtz, Apr 27 2008

Keywords

Comments

b(n) is binomial transform of (0, 0, A077973).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-8,6},{0,0,1},40] (* Harvey P. Dale, Sep 27 2020 *)
  • PARI
    concat([0,0], Vec(1/((1 - 3*x)*(1 - 2*x + 2*x^2)) + O(x^40))) \\ Andrew Howroyd, Jan 03 2020

Formula

a(n) = 3*a(n-1) + A009545(n-1) for n > 0.
From Andrew Howroyd, Jan 03 2020: (Start)
a(n) = Sum_{k=0..n-2} binomial(n, k+2)*A007910(k).
a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) for n >= 3.
G.f.: x*2/((1 - 3*x)*(1 - 2*x + 2*x^2)). (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 03 2020