cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137513 Triangle read by rows: the coefficients of the Mittag-Leffler polynomials.

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 0, 4, 0, 8, 0, 0, 32, 0, 16, 0, 48, 0, 160, 0, 32, 0, 0, 736, 0, 640, 0, 64, 0, 1440, 0, 6272, 0, 2240, 0, 128, 0, 0, 33792, 0, 39424, 0, 7168, 0, 256, 0, 80640, 0, 418816, 0, 204288, 0, 21504, 0, 512, 0, 0, 2594304, 0, 3676160, 0, 924672, 0, 61440, 0, 1024
Offset: 1

Views

Author

Roger L. Bagula, Apr 23 2008

Keywords

Comments

Previous name was: Triangle read by rows: coefficients of the expansion of a polynomial related to the Poisson kernel: p(t,r) = ((1 + t)/(1 - t))^x: r*Exp(i*theta) -> t.
General relation is that Poisson's kernel is the real part of this type of function (page 31 Hoffman reference).
The row polynomials of this table are the Mittag-Leffler polynomials M(n,t), a polynomial sequence of binomial type [Roman, Chapter 4, Section 1.6]. The first few values are M(0,t) = 1, M(1,t) = 2*t, M(2,t) = 4*t^2, M(3,t) = 4*t+8*t^3. The polynomials M(n,t/2) are the (unsigned) row polynomials of A049218. - Peter Bala, Dec 04 2011
Also the Bell transform of the sequence "a(n) = 2*n! if n is even else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			{1},
{0, 2},
{0, 0, 4},
{0, 4, 0, 8},
{0, 0, 32, 0, 16},
{0, 48, 0, 160, 0, 32},
{0, 0, 736, 0, 640, 0, 64},
{0, 1440, 0, 6272, 0, 2240, 0, 128},
{0, 0, 33792, 0, 39424, 0, 7168, 0, 256},
{0, 80640, 0, 418816, 0, 204288, 0, 21504, 0, 512},
{0, 0, 2594304, 0, 3676160,0, 924672, 0, 61440, 0, 1024}
		

References

  • Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 30.
  • Thomas McCullough, Keith Phillips, Foundations of Analysis in the Complex Plane, Holt, Reinhart and Winston, New York, 1973, 215.
  • S. Roman, The Umbral Calculus: Dover Publications, New York (2005).

Crossrefs

Cf. A049218, A098558 (row sums).

Programs

  • Maple
    A137513_row := proc(n) `if`(n=0,1,2*x*hypergeom([1-n,1-x],[2],2));
    PolynomialTools[CoefficientList](expand(n!*simplify(%,hypergeom)),x) end:
    seq(A137513_row(n),n=0..10): ListTools[FlattenOnce]([%]); # Peter Luschny, Jan 28 2016
    # Alternatively, using the function BellMatrix defined in A264428:
    BellMatrix(n -> `if`(n::odd, 0, 2*n!), 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    p[t_] = ((1 + t)/(1 - t))^x; Table[ ExpandAll[n! * SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30} ]], n], x], {n, 0, 10}]; Flatten[a]
    MLP[n_] := Sum[Binomial[n, k]*2^k*FactorialPower[n - 1, n - k]* FactorialPower[x, k] // FunctionExpand, {k, 0, n}]; Table[ CoefficientList[MLP[n], x], {n, 0, 9}] // Flatten (* or: *)
    MLP[0] = 1; MLP[n_] := 2x*n!*Hypergeometric2F1[1-n, 1-x, 2, 2]; Table[ CoefficientList[MLP[n], x], {n, 0, 9}] // Flatten (* or: *)
    BellMatrix[If[OddQ[#], 0, 2*#!]&, 9] (* in triangular matrix form, using Peter Luschny's BellMatrix function defined in A264428 *) (* Jean-François Alcover, Jan 29 2016 *)
  • Sage
    MLP = lambda n: sum(binomial(n, k)*2^k*falling_factorial(n-1, n-k)* falling_factorial(x, k) for k in (0..n)).expand()
    def A137513_row(n): return MLP(n).list()
    for n in (0..9): A137513_row(n) # Peter Luschny, Jan 28 2016

Formula

From Peter Bala, Dec 04 2011: (Start)
T(n,k) = (-1)^k*(n-1)!*Sum_{i=k..n} (-2)^i*binomial(n,i)/(i-1)!*|Stirling1(i,k)|.
E.g.f.: Sum_{n>=0} M(n,t)*x^n/n! = exp(t*log((1+x)/(1-x))) = ((1+x)/(1-x))^t = exp(2*t*atanh(x)) = 1 + (2*t)*x + (4*t^2)*x^2/2! + (4*t+8*t^3)*x^3/3! + ....
M(n,t) = (n-1)!*Sum_{k = 1..n} k*2^k*binomial(n,k)*binomial(t,k), for n>=1.
Recurrence relation: M(n+1,t) = 2*t*Sum_{k = 0..floor(n/2)} (n!/(n-2*k)!)* M(n-2*k,t), with M(0,t) = 1.
The o.g.f. for the n-th diagonal of the table is a rational function in t, given by the coefficient of x^n/n! in the expansion (with respect to x) of the compositional inverse (x-t*log((1+x)/(1-x)))^(-1) = x/(1-2*t) + 4*t/(1-2*t)^4*x^3/3! + (48*t+64*t^2)/(1-2*t)^7*x^5/5! + ...; for example, the o.g.f. for the fifth subdiagonal is (48*t+64*t^2)/(1-2*t)^7 = 48*t + 736*t^2 + 6272*t^3+ .... See the Bala link.
(End)
The row polynomials satisfy M(n, t+1) - M(n, t-1) = 2*n*M(n, t)/t. - Peter Bala, Nov 16 2016

Extensions

Edited and new name by Peter Luschny, Jan 28 2016