A137513 Triangle read by rows: the coefficients of the Mittag-Leffler polynomials.
1, 0, 2, 0, 0, 4, 0, 4, 0, 8, 0, 0, 32, 0, 16, 0, 48, 0, 160, 0, 32, 0, 0, 736, 0, 640, 0, 64, 0, 1440, 0, 6272, 0, 2240, 0, 128, 0, 0, 33792, 0, 39424, 0, 7168, 0, 256, 0, 80640, 0, 418816, 0, 204288, 0, 21504, 0, 512, 0, 0, 2594304, 0, 3676160, 0, 924672, 0, 61440, 0, 1024
Offset: 1
Examples
{1}, {0, 2}, {0, 0, 4}, {0, 4, 0, 8}, {0, 0, 32, 0, 16}, {0, 48, 0, 160, 0, 32}, {0, 0, 736, 0, 640, 0, 64}, {0, 1440, 0, 6272, 0, 2240, 0, 128}, {0, 0, 33792, 0, 39424, 0, 7168, 0, 256}, {0, 80640, 0, 418816, 0, 204288, 0, 21504, 0, 512}, {0, 0, 2594304, 0, 3676160,0, 924672, 0, 61440, 0, 1024}
References
- Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 30.
- Thomas McCullough, Keith Phillips, Foundations of Analysis in the Complex Plane, Holt, Reinhart and Winston, New York, 1973, 215.
- S. Roman, The Umbral Calculus: Dover Publications, New York (2005).
Links
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- H. Bateman, The Polynomial of Mittag-Leffler. PNAS, 26 (8), 1940, 491-496.
- Eric Weisstein's World of Mathematics, Mittag-Leffler Polynomial
Programs
-
Maple
A137513_row := proc(n) `if`(n=0,1,2*x*hypergeom([1-n,1-x],[2],2)); PolynomialTools[CoefficientList](expand(n!*simplify(%,hypergeom)),x) end: seq(A137513_row(n),n=0..10): ListTools[FlattenOnce]([%]); # Peter Luschny, Jan 28 2016 # Alternatively, using the function BellMatrix defined in A264428: BellMatrix(n -> `if`(n::odd, 0, 2*n!), 9); # Peter Luschny, Jan 28 2016
-
Mathematica
p[t_] = ((1 + t)/(1 - t))^x; Table[ ExpandAll[n! * SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30} ]], n], x], {n, 0, 10}]; Flatten[a] MLP[n_] := Sum[Binomial[n, k]*2^k*FactorialPower[n - 1, n - k]* FactorialPower[x, k] // FunctionExpand, {k, 0, n}]; Table[ CoefficientList[MLP[n], x], {n, 0, 9}] // Flatten (* or: *) MLP[0] = 1; MLP[n_] := 2x*n!*Hypergeometric2F1[1-n, 1-x, 2, 2]; Table[ CoefficientList[MLP[n], x], {n, 0, 9}] // Flatten (* or: *) BellMatrix[If[OddQ[#], 0, 2*#!]&, 9] (* in triangular matrix form, using Peter Luschny's BellMatrix function defined in A264428 *) (* Jean-François Alcover, Jan 29 2016 *)
-
Sage
MLP = lambda n: sum(binomial(n, k)*2^k*falling_factorial(n-1, n-k)* falling_factorial(x, k) for k in (0..n)).expand() def A137513_row(n): return MLP(n).list() for n in (0..9): A137513_row(n) # Peter Luschny, Jan 28 2016
Formula
From Peter Bala, Dec 04 2011: (Start)
T(n,k) = (-1)^k*(n-1)!*Sum_{i=k..n} (-2)^i*binomial(n,i)/(i-1)!*|Stirling1(i,k)|.
E.g.f.: Sum_{n>=0} M(n,t)*x^n/n! = exp(t*log((1+x)/(1-x))) = ((1+x)/(1-x))^t = exp(2*t*atanh(x)) = 1 + (2*t)*x + (4*t^2)*x^2/2! + (4*t+8*t^3)*x^3/3! + ....
M(n,t) = (n-1)!*Sum_{k = 1..n} k*2^k*binomial(n,k)*binomial(t,k), for n>=1.
Recurrence relation: M(n+1,t) = 2*t*Sum_{k = 0..floor(n/2)} (n!/(n-2*k)!)* M(n-2*k,t), with M(0,t) = 1.
The o.g.f. for the n-th diagonal of the table is a rational function in t, given by the coefficient of x^n/n! in the expansion (with respect to x) of the compositional inverse (x-t*log((1+x)/(1-x)))^(-1) = x/(1-2*t) + 4*t/(1-2*t)^4*x^3/3! + (48*t+64*t^2)/(1-2*t)^7*x^5/5! + ...; for example, the o.g.f. for the fifth subdiagonal is (48*t+64*t^2)/(1-2*t)^7 = 48*t + 736*t^2 + 6272*t^3+ .... See the Bala link.
(End)
The row polynomials satisfy M(n, t+1) - M(n, t-1) = 2*n*M(n, t)/t. - Peter Bala, Nov 16 2016
Extensions
Edited and new name by Peter Luschny, Jan 28 2016
Comments