cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A113413 A Riordan array of coordination sequences.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 2, 8, 6, 1, 2, 12, 18, 8, 1, 2, 16, 38, 32, 10, 1, 2, 20, 66, 88, 50, 12, 1, 2, 24, 102, 192, 170, 72, 14, 1, 2, 28, 146, 360, 450, 292, 98, 16, 1, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1, 2, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 1, 2, 40, 326
Offset: 0

Views

Author

Paul Barry, Oct 29 2005

Keywords

Comments

Columns include A040000, A008574, A005899, A008412, A008413, A008414. Row sums are A078057(n)=A001333(n+1). Diagonal sums are A001590(n+3). Reverse of A035607. Signed version is A080246. Inverse is A080245.
For another version see A122542. - Philippe Deléham, Oct 15 2006
T(n,k) is the number of length n words on alphabet {0,1,2} with no two consecutive 1's and no two consecutive 2's and having exactly k 0's. - Geoffrey Critzer, Jun 11 2015
From Eric W. Weisstein, Feb 17 2016: (Start)
Triangle of coefficients (from low to high degree) of x^-n * vertex cover polynomial of the n-ladder graph P_2 \square p_n:
Psi_{L_1}: x*(2 + x) -> {2, 1}
Psi_{L_2}: x^2*(2 + 4 x + x^2) -> {2, 4, 1}
Psi_{L_3}: x^3*(2 + 8 x + 6 x^2 + x^3) -> {2, 8, 6, 1}
(End)
Let c(n, k), n > 0, be multiplicative sequences for some fixed integer k >= 0 with c(p^e, k) = T(e+k, k) for prime p and e >= 0. Then we have Dirichlet g.f.: Sum_{n>0} c(n, k) / n^s = zeta(s)^(2*k+2) / zeta(2*s)^(k+1). Examples: For k = 0 see A034444 and for k = 1 see A322328. Dirichlet convolution of c(n, k) and lambda(n) is Dirichlet inverse of c(n, k). - Werner Schulte, Oct 31 2022

Examples

			Triangle begins
  1;
  2,  1;
  2,  4,  1;
  2,  8,  6,  1;
  2, 12, 18,  8,  1;
  2, 16, 38, 32, 10,  1;
  2, 20, 66, 88, 50, 12,  1;
		

Crossrefs

Other versions: A035607, A119800, A122542, A266213.

Programs

  • Mathematica
    nn = 10; Map[Select[#, # > 0 &] &, CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, nn}], {x, y}]] // Grid (* Geoffrey Critzer, Jun 11 2015 *)
    CoefficientList[CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, 10}, {y, 0, 10}], x], y] (* Eric W. Weisstein, Feb 17 2016 *)
  • Sage
    T = lambda n,k : binomial(n, k)*hypergeometric([-k-1, k-n], [-n], -1).simplify_hypergeometric()
    A113413 = lambda n,k : 1 if n==0 and k==0 else T(n, k)
    for n in (0..12): print([A113413(n,k) for k in (0..n)]) # Peter Luschny, Sep 17 2014 and Mar 16 2016
    
  • Sage
    # Alternatively:
    def A113413_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (1..n)]
    for n in (1..10): print(A113413_row(n)) # Peter Luschny, Mar 16 2016

Formula

From Paul Barry, Nov 13 2005: (Start)
Riordan array ((1+x)/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{i=0..n-k} C(k+1, i)*C(n-i, k).
T(n, k) = Sum_{j=0..n-k} C(k+j, j)*C(k+1, n-k-j).
T(n, k) = D(n, k) + D(n-1, k) where D(n, k) = Sum_{j=0..n-k} C(n-k, j)*C(k, j)*2^j = A008288(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k-1).
T(n, k) = Sum_{j=0..n} C(floor((n+j)/2), k)*C(k, floor((n-j)/2)). (End)
T(n, k) = C(n, k)*hypergeometric([-k-1, k-n], [-n], -1). - Peter Luschny, Sep 17 2014
T(n, k) = (Sum_{i=2..k+2} A137513(k+2, i) * (n-k)^(i-2)) / (k!) for 0 <= k < n (conjectured). - Werner Schulte, Oct 31 2022

A010006 Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.

Original entry on oeis.org

1, 18, 66, 146, 258, 402, 578, 786, 1026, 1298, 1602, 1938, 2306, 2706, 3138, 3602, 4098, 4626, 5186, 5778, 6402, 7058, 7746, 8466, 9218, 10002, 10818, 11666, 12546, 13458, 14402, 15378, 16386, 17426, 18498, 19602, 20738, 21906, 23106, 24338, 25602, 26898
Offset: 0

Views

Author

N. J. A. Sloane, mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 66, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A206399. For the coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C_3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50). Cf. A137513.

Programs

Formula

a(0)=1, a(n) = 16*n^2 + 2, n >= 1.
G.f.: (1+x)*(1+14*x+x^2)/(1-x)^3.
G.f. for coordination sequence of C_n lattice: (1/(1-z)^n)*Sum_{i=0..n} binomial(2*n, 2*i)*z^i.
E.g.f.: (x*(x+1)*16+2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=66, a(3)=146. - Harvey P. Dale, Oct 15 2012
G.f. for sequence with interpolated zeros: cosh(6*arctanh(x)) = (1/2)*( ((1 - x)/(1 + x))^3 + ((1 + x)/(1 - x))^3) = 1 + 18*x^2 + 66*x^4 + 146*x^6 + .... More generally, cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. Note that exp(t*arctanh(x)) is the e.g.f. for the Mittag_Leffler polynomials. See A137513. - Peter Bala, Apr 09 2017
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(2)/16*Pi*coth( Pi*sqrt(2)/4) = 1.095237238050... - R. J. Mathar, May 07 2024
a(n) = 2*A081585(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069129(n)+A069129(n+1). - R. J. Mathar, May 07 2024

A049218 Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -8, 0, 1, 24, 0, -20, 0, 1, 0, 184, 0, -40, 0, 1, -720, 0, 784, 0, -70, 0, 1, 0, -8448, 0, 2464, 0, -112, 0, 1, 40320, 0, -52352, 0, 6384, 0, -168, 0, 1, 0, 648576, 0, -229760, 0, 14448, 0, -240, 0, 1, -3628800, 0, 5360256, 0, -804320, 0, 29568, 0, -330, 0, 1
Offset: 1

Views

Author

Keywords

Comments

|T(n,k)| gives the sum of the M_2 multinomial numbers (A036039) for those partitions of n with exactly k odd parts. E.g.: |T(6,2)| = 144 + 40 = 184 from the partitions of 6 with exactly two odd parts, namely (1,5) and (3,3), with M_2 numbers 144 and 40. Proof via the general Jabotinsky triangle formula for |T(n,k)| using partitions of n into k parts and their M_3 numbers (A036040). Then with the special e.g.f. of the (unsigned) k=1 column, f(x):= arctanh(x), only odd parts survive and the M_3 numbers are changed into the M_2 numbers. For the Knuth reference on Jabotinsky triangles see A039692. - Wolfdieter Lang, Feb 24 2005 [The first two sentences have been corrected thanks to the comment by José H. Nieto S. given below. - Wolfdieter Lang, Jan 16 2012]
|T(n,k)| gives the number of permutations of {1,2,...,n} (degree n permutations) with the number of odd cycles equal to k. E.g.: |T(5,3)|= 20 from the 20 degree 5 permutations with cycle structure (.)(.)(...). Proof: Use the cycle index polynomial for the symmetric group S_n (see the M_2 array A036039 or A102189) together with the partition interpretation of |T(n,k)| given above. - Wolfdieter Lang, Feb 24 2005 [See the following José H. Nieto S. correction. - Wolfdieter Lang, Jan 16 2012]
The first sentence of the above comment is inexact, it should be "|T(n,k)| gives the number of degree n permutations which decompose into exactly k odd cycles". The number of degree n permutations with k odd cycles (and, possibly, other cycles of even length) is given by A060524. - José H. Nieto S., Jan 15 2012
The unsigned triangle with e.g.f. exp(x*arctanh(z)) is the associated Jabotinsky type triangle for the Sheffer type triangle A060524. See the comments there. - Wolfdieter Lang, Feb 24 2005
Also the Bell transform of the sequence (-1)^(n/2)*A005359(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
   1;
   0,   1;
  -2,   0,   1;
   0,  -8,   0,   1;
  24,   0, -20,   0,   1;
   0, 184,   0, -40,   0,   1;
  ...
O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.

Crossrefs

Essentially same as A008309, which is the main entry for this sequence.
Row sums (unsigned) give A000246(n); signed row sums give A002019(n), n>=1. A137513.

Programs

  • Maple
    A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # R. J. Mathar, Feb 14 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Dec 06 2011, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 12;
    M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)

Formula

E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(n, k) x^n/n!.
T(n,k) = ((-1)^((3*n+k)/2)*n!/2^k)*Sum_{i=k..n} 2^i*binomial(n-1,i-1)*Stirling1(i,k)/i!. - Vladimir Kruchinin, Feb 11 2011
E.g.f.: exp(t*arctan(x)) = 1 + t*x + t^2*x^2/2! + t*(t^2-2)*x^3/3! + .... The unsigned row polynomials are the Mittag-Leffler polynomials M(n,t/2). See A137513. The compositional inverse (with respect to x) (x-t/2*log((1+x)/(1-x)))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3!+ (24*t+16*t^2)/(1-t)^7*x^5/5! + .... The rational functions in t generate the (unsigned) diagonals of the table. See the Bala link. - Peter Bala, Dec 04 2011

Extensions

Additional comments from Michael Somos

A019560 Coordination sequence for C_4 lattice.

Original entry on oeis.org

1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512, 36992, 47008, 58688, 72160, 87552, 104992, 124608, 146528, 170880, 197792, 227392, 259808, 295168, 333600, 375232, 420192, 468608
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 4). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Magma
    [1] cat [(32/3)*n*(1 + 2*n^2): n in [1..40]]; // Vincenzo Librandi, Apr 10 2017
  • Mathematica
    Join[{1}, Table[(32/3) n (1 + 2 n^2), {n, 30}]] (* Vincenzo Librandi, Apr 10 2017 *)

Formula

a(n) = (32/3)*n*(1 + 2*n^2) for n>0.
G.f.: (1 + 28*x + 70*x^2 + 28*x^3 + x^4)/(1 - x)^4.
G.f. for sequence with interpolated zeros: cosh(8*arctanh(x)) = 1/2*(((1 + x)/(1 - x))^4 + ((1 - x)/(1 + x))^4) = 1 + 32*x^2 + 192*x^4 + 608*x^6 + .... Cf. A057813. - Peter Bala, Apr 09 2017
a(n) = A008412(2*n). - Seiichi Manyama, Jun 08 2018

A019561 Coordination sequence for C_5 lattice.

Original entry on oeis.org

1, 50, 450, 1970, 5890, 14002, 28610, 52530, 89090, 142130, 216002, 315570, 446210, 613810, 824770, 1086002, 1404930, 1789490, 2248130, 2789810, 3424002, 4160690, 5010370, 5984050, 7093250, 8350002
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 5). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,50,450,1970,5890,14002},30] (* Harvey P. Dale, Nov 21 2021 *)

Formula

G.f.: (1+45*x+210*x^2+210*x^3+45*x^4+x^5)/(1-x)^5 = 1+2*x*(5+10*x+x^2)^2/(1-x)^5.
G.f. for sequence with interpolated zeros: cosh(10*arctanh(x)) = 1/2*( ((1 + x)/(1 - x))^5 + ((1 - x)/(1 + x))^5 ) = 1 + 50*x^2 + 450*x^4 + 1970*x^6 + .... - Peter Bala, Apr 09 2017
a(n) = A008413(2*n). - Seiichi Manyama, Jun 08 2018
Showing 1-5 of 5 results.