cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137590 Number of alternating full cycles on n letters.

Original entry on oeis.org

1, 0, 1, 1, 3, 10, 39, 173, 882, 5052, 32163, 225230, 1720635, 14240070, 126917155, 1211969509, 12345020175, 133604426410, 1530993953307, 18518559411876, 235785621577351, 3152221563324450, 44148864630732711, 646438923481545230, 9876859207608319344, 157195096511273995860
Offset: 1

Views

Author

Vladimir Shevelev, Apr 26 2008

Keywords

Comments

a(n) is the number of full cycles pi of elements 1,2,...,n for which pi(1)pi(3)<...
Calculations show that A000111(n)/n gives a highly good approximation to a(n). Examples: A000111(8)/8=1385/8=173.1 while a(8)=173; A000111(12)/12=225230.4 while a(12)=225230.
For all n except 2, a(n) is also the number of full cycles pi of elements 1,2,...,n for which pi(1)>pi(2)..., although it is not obvious that the number of up-down cycles should be equal to the number of down-up cycles. See the Stanley link. - Justin M. Troyka, Jun 11 2015

Examples

			a(3)=1 because we have 231; a(4)=1 because we have 2413; a(5)=3 because we have 24153, 34251, and 45231. - _Emeric Deutsch_, Jul 03 2009
		

Crossrefs

Programs

  • Mathematica
    t[n_, 0] := If[n==0, 1, 0]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k];
    e[n_] := t[n, n];
    a[n_] := If[OddQ[n], (1/n) Sum[MoebiusMu[d] (-1)^((d-1)/2) e[n/d], {d, Divisors[n]}], k = IntegerExponent[n, 2]; m = n/2^k; If[m > 1, (1/n) Sum[ MoebiusMu[d] e[n/d], {d, Divisors[m]}], (1/n)(e[n]-1)]];
    Array[a, 30] (* Jean-François Alcover, Jan 23 2019 *)
  • PARI
    E(n) = if (n<1, n==0, n--; n! * polcoeff( 1 / (1 - sin(x + x * O(x^n))), n));
    a(n) = if (n % 2, (1/n)*sumdiv(n, d, moebius(d)*(-1)^((d-1)/2)*E(n/d)), k = valuation(n, 2); m = n/2^k; if (m > 1, (1/n)*sumdiv(m, d, moebius(d)*E(n/d)), (1/n)*(E(n) - 1))); \\ Michel Marcus, Jun 14 2015

Formula

Write E(n) = A000111(n), the number of alternating permutations on n letters. If n is odd, then a(n) = (1/n) Sum_{d|n} mu(d) (-1)^{(d-1)/2} E(n/d). If n is even but not a power of 2, then write n = 2^k m where m is odd, and then a(n) = (1/n) Sum_{d|m} mu(d) E(n/d). If n is a power of 2 and n >= 4, then a(n) = (1/n) (E(n) - 1). It follows from these formulas that a(n) ~ E(n)/n. See the Stanley link. - Justin M. Troyka, Jun 11 2015

Extensions

More terms from Justin M. Troyka, Jun 11 2015