cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137652 Numbers k such that 12^k + 5 is prime.

Original entry on oeis.org

1, 2, 3, 8, 21, 26, 31, 50, 55, 69, 392, 661, 12648, 31038
Offset: 1

Views

Author

Zak Seidov, Feb 01 2008

Keywords

Comments

a(14) > 15000. - Jinyuan Wang, Mar 05 2020

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(12^n+5)],Print[n]],{n,2000}]
  • PARI
    is(n)=ispseudoprime(12^n+5) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(13) from Jinyuan Wang, Mar 05 2020
a(14) from Michael S. Branicky, Jul 07 2024

A137653 Numbers k such that 12^k + 7 is prime.

Original entry on oeis.org

1, 2, 4, 5, 6, 20, 21, 22, 28, 58, 120, 144, 1100, 1926, 2892, 4773, 5214, 17241, 18980, 31265
Offset: 1

Views

Author

Zak Seidov, Feb 01 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(12^n+7)],Print[n]],{n,2000}]
  • PARI
    is(n)=ispseudoprime(12^n+7) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(15)-a(17) from Jinyuan Wang, Mar 03 2020
a(18)-a(19) from Michael S. Branicky, Mar 15 2023
a(20) from Michael S. Branicky, Jul 28 2024

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))
Showing 1-3 of 3 results.