A117371 Number of primes between smallest prime divisor of n and largest prime divisor of n that are coprime to n (not factors of n).
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 1, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 5, 0, 0, 0, 6, 3, 1, 0, 1, 0, 3, 0, 7, 0, 0, 0, 1, 4, 4, 0, 0, 1, 2, 5, 8, 0, 0, 0, 9, 1, 0, 2, 2, 0, 5, 6, 1, 0, 0, 0, 10, 0, 6, 0, 3, 0, 1, 0, 11, 0, 1, 3, 12, 7, 3, 0, 0, 1, 7, 8, 13, 4, 0, 0, 2, 2, 1, 0, 4, 0
Offset: 1
Keywords
Examples
a(30) is 0 because the one prime (which is 3) between the smallest prime dividing 30 (which is 2) and the largest prime dividing 30 (which is 5) is not coprime to 30. On the other hand, a(14) = 2 because there are two primes (3 and 5) that are between 14's least prime divisor (2) and greatest prime divisor (7) and 3 and 5 are both coprime to 14.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Maple
A020639 := proc(n) local ifs; if n = 1 then 1 ; else ifs := ifactors(n)[2] ; min(seq(op(1,i),i=ifs)) ; fi ; end: A006530 := proc(n) local ifs; if n = 1 then 1 ; else ifs := ifactors(n)[2] ; max(seq(op(1,i),i=ifs)) ; fi ; end: A117371 := proc(n) local a,i ; a := 0 ; if n < 2 then 0 ; else for i from A020639(n)+1 to A006530(n)-1 do if isprime(i) and gcd(i,n) = 1 then a := a+1 ; fi ; od; fi ; RETURN(a) ; end: seq(A117371(n),n=1..140) ; # R. J. Mathar, Sep 05 2007
-
Mathematica
Table[Count[Prime[Range[PrimePi@ First@ # + 1, PrimePi@ Last@ # - 1]], ?(GCD[#, n] == 1 &)] &@ FactorInteger[n][[All, 1]], {n, 103}] (* _Michael De Vlieger, Sep 10 2018 *)
-
PARI
A117371(n) = if(1==n,0, my(f = factor(n), p = f[1, 1], gpf = f[#f~, 1], c = 0); while(p
Antti Karttunen, Sep 10 2018
Formula
Extensions
More terms from R. J. Mathar, Sep 05 2007
Comments