A137798 Partial sums of A137797.
0, 0, 4, 8, 16, 14, 16, 18, 24, 30, 30, 30, 34, 38, 46, 44, 46, 48, 54, 60, 60, 60, 64, 68, 76, 74, 76, 78, 84, 90, 90, 90, 94, 98, 106, 104, 106, 108, 114, 120, 120, 120, 124, 128, 136, 134, 136, 138, 144, 150, 150, 150, 154, 158, 166, 164, 166, 168, 174, 180, 180, 180
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,1,0,-1).
Crossrefs
Cf. A137797.
Programs
-
Mathematica
Accumulate[LinearRecurrence[{-1,0,0,0,1,1},{0,0,4,4,8,-2,2},100]] (* or *) LinearRecurrence[{0,1,0,0,1,0,-1},{0,0,4,8,16,14,16},100] (* Harvey P. Dale, Jun 08 2015 *)
-
PARI
concat([0,0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
-
Python
sequence = [] l = list(range(20)) while len(l) > 0: a = l.pop(0) z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a)) sequence.append(z) print(sequence)
Formula
f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).
a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - Colin Barker, Dec 16 2014
G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014