cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137798 Partial sums of A137797.

Original entry on oeis.org

0, 0, 4, 8, 16, 14, 16, 18, 24, 30, 30, 30, 34, 38, 46, 44, 46, 48, 54, 60, 60, 60, 64, 68, 76, 74, 76, 78, 84, 90, 90, 90, 94, 98, 106, 104, 106, 108, 114, 120, 120, 120, 124, 128, 136, 134, 136, 138, 144, 150, 150, 150, 154, 158, 166, 164, 166, 168, 174, 180, 180, 180
Offset: 0

Views

Author

William A. Tedeschi, Feb 10 2008

Keywords

Crossrefs

Cf. A137797.

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{-1,0,0,0,1,1},{0,0,4,4,8,-2,2},100]] (* or *) LinearRecurrence[{0,1,0,0,1,0,-1},{0,0,4,8,16,14,16},100] (* Harvey P. Dale, Jun 08 2015 *)
  • PARI
    concat([0,0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
  • Python
    sequence = []
    l = list(range(20))
    while len(l) > 0:
        a = l.pop(0)
        z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a))
        sequence.append(z)
    print(sequence)
    

Formula

f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).
a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - Colin Barker, Dec 16 2014
G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014