A137879 Numbers k such that k^2 is a 17-gonal number.
1, 133, 615, 64107, 296429, 30899441, 142878163, 14893466455, 68866978137, 7178619931869, 33193740583871, 3460079913694403, 15999314094447685, 1667751339780770377, 7711636199783200299, 803852685694417627311, 3716992648981408096433
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..745
- Index entries for linear recurrences with constant coefficients, signature (0,482,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,482,0,-1},{1,133,615,64107},20] (* Harvey P. Dale, May 12 2014 *)
-
PARI
is(n)=ispolygonal(n^2,17) \\ Charles R Greathouse IV, Oct 16 2015
Formula
From Max Alekseyev, Oct 19 2008: (Start)
For n>=5, a(n) = 482*a(n-2) - a(n-4).
a(2n) = (-60 + 17*sqrt(30))/120 * (11 + 2*sqrt(30))^(2n) + (-60 - 17*sqrt(30))/120 * (11 - 2*sqrt(30))^(2n).
a(2n+1) = (60 + 17*sqrt(30))/120 * (11 + 2*sqrt(30))^(2n) + (60 - 17*sqrt(30))/120 * (11 - 2*sqrt(30))^(2n). (End)
Extensions
Extended by Max Alekseyev, Oct 19 2008
Comments